Published online by Cambridge University Press: 31 July 2009
Introduction
In eukaryotic organisms, RNA interference (RNAi) is the sequence-specific gene silencing that is induced by double-stranded RNA (dsRNA) homologous to the silenced gene. In the cytoplasm of mammalian cells, long dsRNAs (>30 nt) can activate the potent interferon and a protein kinase-mediated pathway, which lead to non-sequence-specific effects that can include apoptosis (Kumar and Carmichael, 1998). Elbashir and coworkers (2001a) made the important discovery that small interfering RNAs (siRNAs) of about 21 nt specifically inhibit gene expression, because siRNAs are too short to activate the interferon or protein kinase pathway. The silencing by synthetic siRNAs is transient. This limitation can be overcome by stably expressed short hairpin RNAs (shRNAs), which are processed by Dicer into siRNAs (Paddison et al., 2002; Brummelkamp et al., 2002). However, it was recently reported that shRNA vectors can induce an interferon response (Bridge et al., 2003).
Because target recognition presumably depends on Watson-Crick base pairing, the RNAi machinery is widely believed to be exquisitely specific. As a reverse genetic tool, RNAi has set the standard in high-throughput functional genomics (Barstead, 2001; Tuschl, 2003). RNAi has also become an important tool in the identification and validation of drug targets in preclinical therapeutic development (Thompson, 2002; Appasani, 2003). Furthermore, RNAi-based human therapeutics are under development.
Initial empirical rules have been established by the Tuschl lab for the design of siRNAs. However, large variation in the potency of siRNAs is commonly observed, and often only a small proportion of the tested siRNAs are effective.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.