Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T04:16:22.948Z Has data issue: false hasContentIssue false

19 - RNA-mediated gene silencing in fission yeast

Published online by Cambridge University Press:  31 July 2009

Greg M. Arndt
Affiliation:
Johnson & Johnson Research
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Different forms of RNA-mediated gene silencing, namely antisense RNA, ribozymes and double-stranded RNA (dsRNA), act in naturally occurring mechanisms of gene regulation and provide tools for artificially silencing specific genes (Brantl, 2002). Early work in bacteria indicated that RNA could act as a key regulator of complex biological systems (Itoh and Tomizawa, 1980). These observations led to the use of antisense RNA as a regulator of gene expression in both prokaryotes and eukaryotes (Izant and Weintraub, 1984; Pestka et al., 1984). Equally, characterization of plant viruses and viroids uncovered the presence of RNA sequences with the ability to catalyze degradation of homologous RNA (Forster and Symons, 1987). Adaptation of these catalytic RNAs, or ribozymes, to cleave any target sequence led to applications in both plant biotechnology and medicine (Peurta-Fernandez et al., 2003). The recent discovery of dsRNA as a key effector of RNA-directed gene silencing, in a wide range of different organisms, has revolutionized studies of gene function (Fire et al., 1998). In addition, it has provided evidence for the existence of a multi-component protein complex capable of using dsRNA signals to mediate post-transcriptional and transcriptional gene silencing (Hannon, 2002).

Model organisms have been instrumental in advancing our understanding of the mechanisms underlying different forms of gene regulation. In the area of gene silencing directed by RNA, this is best exemplified by the genetic and biochemical studies in nematodes, plants and flies, examining the mechanism of dsRNA-mediated gene regulation or RNA interference (RNAi).

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 257 - 269
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, Y., Cioca, D. P., Oidaira, H., Kamiya, J. and Kiyosawa, K. (2003). RNA interference may be more potent than antisense RNA in human cancer cell lines. Clinical and Experimental Pharmacology and Physiology, 30, 96–102CrossRefGoogle ScholarPubMed
Aravind, L., Watanabe, H., Lipman, D. J. and Koonin, E. V. (2000). Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proceedings of the National Academy of Sciences USA, 97, 11319–11324CrossRefGoogle ScholarPubMed
Arndt, G. M., Atkins, D., Patrikakis, M. and Izant, J. G. (1995). Gene regulation by antisense RNA in the fission yeast Schizosaccharomyces pombe. Molecular & General Genetics 248, 293–300CrossRefGoogle ScholarPubMed
Arndt, G. M., Patrikakis, M. and Atkins, D. (2000). A rapid genetic screening system for identifying gene-specific suppression constructs for use in human cells. Nucleic Acids Research, 28, e15CrossRefGoogle ScholarPubMed
Atkin, A. L., Schenkman, L. R., Eastham, M., Dahlseid, J. N., Lelivelt, M. J., and Culbertson, M. R. (1997). Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. Journal of Biological Chemistry, 272, 22163–22172CrossRefGoogle ScholarPubMed
Atkins, D., Arndt, G. M. and Izant, J. G. (1994). Antisense gene expression in yeast. Biol. Chem. Hoppe-Seyler, 375, 721–729Google ScholarPubMed
Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366CrossRefGoogle ScholarPubMed
Bosher, J. M. and Labouesse, M. (2000). RNA interference: genetic wand and genetic watchdog. Nature Cell Biology, 2, E31–E36CrossRefGoogle ScholarPubMed
Brantl, S. (2002). Antisense-RNA regulation and RNA interference. Biochemica et Biophysica Acta, 1575, 15–25CrossRefGoogle ScholarPubMed
Caudy, A. A., Ketting, R. F., Hammond, S. M., Denli, A. M., Bathoorn, A. M. P., Tops, B. B. J., Silva, J. M., Myers, M. M., Hannon, G. J. and Plasterk, R. H. A. (2003). A micrococcal nuclease homologue in RNAi effector complexes. Nature, 425, 411–414CrossRefGoogle ScholarPubMed
Condeelis, J. (1995). Elongation factor 1α, translation and the cytoskeleton. Trends in Biochemical Sciences, 20, 169–170CrossRefGoogle ScholarPubMed
Denli, A. M. and Hannon, G. J. (2003). RNAi: An ever-growing puzzle. Trends in Biochemical Sciences, 28, 196–201CrossRefGoogle ScholarPubMed
DiSerio, F., Schob, H., Iglesias, A., Tarina, C., Bouldoires, E., and Meins, F. Jr (2001). Senseand antisense-mediated gene silencing in tobacco is inhibited by the same viral suppressors and is associated with accumulation of small RNAs. Proceedings of the National Academy of Sciences USA, 98, 6506–6510CrossRefGoogle Scholar
Djikeng, A., Shi, H., Tschudl, C., Shen, S. and Ullu, E. (2003). An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanasoma brucei. RNA 9, 802–808CrossRefGoogle Scholar
Domeier, M. E., Morse, D. P., Knight, S. W., Portereiko, M., Bass, B. L. and Mango, S. E. (2000). A link between RNA interference and nonsense-mediated decay in C. elegans. Science, 289, 1928–1931CrossRefGoogle Scholar
Fire, A., Xu, S., Montegomery, M., Kostas, S., Driver, S. and Mello, C. (1998). Potent and specific genetic interference by double-stranded RNA in C. elegans. Nature, 391, 806–811CrossRefGoogle Scholar
Forster, A. and Symons, R. (1987). Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell, 49, 211–220CrossRefGoogle Scholar
Glick, B. and Schatz, G. (1991). Import of proteins into mitochondria. Annual Review of Genetics, 25, 21–44CrossRefGoogle ScholarPubMed
Grallert, B., Kearsey, S., Lenhard, M., Carlson, C., Nurse, P., Boye, E. and Labib, K. (2000). A fission yeast general translation factor reveals links between protein synthesis and cell cycle control. Journal of Cell Science, 113, 1447–1458Google Scholar
Grewal, S. I. S. and Moazed, D. (2003). Heterochromatin and epigenetic control of gene expression. Science, 301, 798–802CrossRefGoogle ScholarPubMed
Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S. I. S. (2002). Establishment and maintenance of a heterochromatin domain. Science, 297, 2232–2237CrossRefGoogle ScholarPubMed
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. and Hannon, G. J. (2003). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146–1150CrossRefGoogle Scholar
Hannon, G. J. (2002). RNA interference. Nature, 418, 244–251CrossRefGoogle ScholarPubMed
Iborra, F. J., Jackson, D. A. and Cook, P. R. (2001). Coupled transcription and translation within nuclei of mammalian cells. Science, 293, 1139–1142CrossRefGoogle ScholarPubMed
Ishizuka, A., Siomi, M. C. and Siomi, H. (2002). A Drosophila Fragile X protein interacts with components of RNAi and ribosomal proteins. Genes & Development, 16, 2497–2508CrossRefGoogle ScholarPubMed
Itoh, T. and Tomizawa, J. (1980). Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proceedings of the National Academy of Sciences USA, 77, 2450–2454CrossRefGoogle ScholarPubMed
Izant, J. and Weintraub, H. (1984). Inhibition of thymidine kinase gene expression by anti-sense RNA: A molecular approach to genetic analysis. Cell, 36, 1007–1015CrossRefGoogle ScholarPubMed
Kretschmer-Kazemi Far, R. and Sczakiel, G. (2003). The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Research, 31, 4417–4424CrossRefGoogle ScholarPubMed
Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H., Smith, D. P. and Wang, X. (2003). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science, 301, 1921–1925CrossRefGoogle ScholarPubMed
Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-stranded antisense RNAs guide target RNA cleavage in RNAi. Cell, 110, 563–574CrossRefGoogle ScholarPubMed
McManus, M. T. and Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics, 3, 737–747CrossRefGoogle ScholarPubMed
Mette, M. F., Aufsatz, W., Winden, J., Matzke, M. A. and Matzke, A. J. (2000). Transcriptional and promoter methylation triggered by double-stranded RNA. European Molecular Biology Organization Journal, 19, 5194–5201CrossRefGoogle ScholarPubMed
Paul, C. P., Good, P. D., Winder, I. and Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508CrossRefGoogle ScholarPubMed
Pestka, S., Daugherty, B., Jung, V., Hotta, K. and Pestka, R. (1984). Anti-mRNA: Specific inhibition of translation of single mRNA molecules. Proceedings of the National Academy of Sciences USA, 81, 7525–7528CrossRefGoogle ScholarPubMed
Peurta-Fernandez, E., Romero-Lopez, C., Barroso-de Jesus, A. and Berzal-Herranz, A. (2003). Ribozymes: Recent advances in the development of RNA tools. Federation of European Microbiology Society Microbiology Reviews, 27, 75–97Google Scholar
Ramer, S., Elledge, S. and Davis, R. (1992). Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. Proceedings of the National Academy of Sciences USA, 89, 11589–11593CrossRefGoogle ScholarPubMed
Raponi, M., Atkins, D., Dawes, I. W. and Arndt, G. M. (2000). The influence of antisense gene location on target gene suppression in the fission yeast Schizosaccharomyces pombe. Antisense & Nucleic Acid Drug Development, 10, 29–34CrossRefGoogle ScholarPubMed
Raponi, M. and Arndt, G. M. (2002). Dominant genetic screen for cofactors that enhance antisense RNA-mediated gene silencing in fission yeast. Nucleic Acids Research, 30, 2546–2554CrossRefGoogle ScholarPubMed
Raponi, M. and Arndt, G. M. (2003). Double-stranded RNA-mediated gene silencing in fission yeast. Nucleic Acids Research, 31, 4481–4489CrossRefGoogle ScholarPubMed
Reinhart, B. J. and Bartel, D. P. (2002). Small RNAs correspond to centromere heterochromatic repeats. Science, 297, 1831CrossRefGoogle ScholarPubMed
Schramke, V. and Allshire, R. (2003). Hairpin RNAs and retrotransposon DNA effect RNAi and chromatin-based gene silencing. Science, 301, 1069–1074CrossRefGoogle ScholarPubMed
Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I. S, and Martienssen, R. A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833–1837CrossRefGoogle ScholarPubMed
Wang, J., Tekle, E., Oubrahim, H., Mieyal, J. J., Stadtman, E. R. and Chock, P. B. (2003). Stable and controllable RNA interference: Investigating the physiological function of glutathionylated actin. Proceedings of the National Academy of Sciences USA, 100, 5103–5106CrossRefGoogle ScholarPubMed
Waterhouse, P., Graham, M. and Wang, M. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences USA, 95, 13959–13964CrossRefGoogle ScholarPubMed
Wutz, A. (2003). Xist RNA associates with chromatin and causes gene silencing. In Noncoding RNAs: Molecular Biology and Molecular Medicine, ed. J. Barciszewski and V. A. Erdmann, pp. 49–65, New York, NY: Kluwer Academic/Plenum Publishers
Yelin, R., Dahary, D., Sorek, R., Levanon, E. Y., Goldstein, O., Shoshan, A., Diber, A., Biton, S., Tamir, Y., Khosravi, R., Nemzer, S., Pinner, E., Walach, S., Bernstein, J., Savitsky, K. and Rotman, G. (2003). Widespread occurrence of antisense transcription in the human genome. Nature Biotechnology, 21, 379–386CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×