Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-02T17:00:48.392Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2012

Gunnar Pruessner
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Self-Organised Criticality
Theory, Models and Characterisation
, pp. 398 - 458
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adami, C., and J., Chu, 2002, Critical and near-critical branching processes, Phys. Rev.E 66(1), 011907 (8 pp), arXiv:cond-mat/9903085. → p 257.Google ScholarPubMed
Aegerter, C. M., 1998, Evidence for self-organized criticality in the Bean critical state in superconductors, Phys. Rev.E 58(2), 1438–1441. → p 60.Google Scholar
Aegerter, C. M., 2003, A sandpile model for the distribution of rainfall?, PhysicaA 319, 1–10. → pp 187, 189, 192, 209.Google Scholar
Aegerter, C. M., R., Güunther, and R. J., Wijngaarden, 2003, Avalanche dynamics, surface roughening, and self-organized criticality: experiments on a three-dimensional pile of rice, Phys. Rev.E 67(5), 051306 (6 pp), arXiv:cond-mat/0305592. → pp 58, 192, 193, 301, 305.Google ScholarPubMed
Aegerter, C. M., K. A., Lőrincz, M. S., Welling, and R. J., Wijngaarden, 2004a, Extremal dynamics and the approach to the critical state: experiments on a three dimensional pile of rice, Phys. Rev. Lett. 92(5), 058702 (4 pp). → pp 58, 192.CrossRefGoogle ScholarPubMed
Aegerter, C. M., M. S., Welling, and R. J., Wijngaarden, 2004b, Self-organized criticality in the Bean state in YBa2Cu3O7-x thin films, Europhys. Lett. 65(6), 753–759. → pp 60, 61.CrossRefGoogle Scholar
Aegerter, C. M., M. S., Welling, and R. J., Wijngaarden, 2005, Dynamic roughening of the magnetic flux landscape in YBa2Cu3O7-x, PhysicaA 347, 363–374. → p 61.Google Scholar
Ahlgren, P., M., Avlund, I., Klewe, J. N., Pedersen, and Á., Corral, 2002, Anomalous transport in conical granular piles, Phys. Rev.E 66(3), 031305 (5 pp). → pp 58, 192, 193, 197.Google ScholarPubMed
Alava, M., 2002, Scaling in self-organized criticality from interface depinning?, J. Phys.: Condens. Matter 14(9), 2353–2360, arXiv:cond-mat/0204226. → pp 150, 180, 203, 302, 307, 320.Google Scholar
Alava, M., 2004, Self-organized criticality as a phase transition, in Advances in Condensed Matter and Statistical Physics, edited by E., Korutcheva and R., Cuerno (Nova Science Publishers, New York, NY, USA), pp. 69–102, arXiv:cond-mat/0307688. → p 6.Google Scholar
Alava, M., M., Dubé, and M., Rost, 2004, Imbibition in disordered media, Adv. Phys. 53(2), 83–175. → p 155.CrossRefGoogle Scholar
Alava, M. J., and K. B., Lauritsen, 2001, Quenched noise and over-active sites in sandpile dynamics, Europhys. Lett. 53(5), 563–569, arXiv:cond-mat/0002406v2. → pp 165, 171, 178, 180, 182, 300, 302, 307.CrossRefGoogle Scholar
Alava, M. J., L., Laurson, A., Vespignani, and S., Zapperi, 2008, Comment on ‘self-organized criticality and absorbing states: lessons from the Ising model’, Phys. Rev.E 77(4), 048101 (2 pp), comment on (Pruessner and Peters, 2006), reply (Pruessner and Peters, 2008). → pp 170, 190, 227, 338, 339, 341, 445.Google ScholarPubMed
Alava, M., and M. A., Muñoz, 2002, Interface depinning versus absorbing-state phase transitions, Phys. Rev.E 65(2), 026145 (8 pp), arXiv:cond-mat/0105591. → pp 61, 168, 178–180, 209, 299, 300.Google ScholarPubMed
Albert, R., I., Albert, D., Hornbaker, P., Schiffer, and A.-L., Barabási, 1997, Maximum angle of stability in wet and dry spherical granular media, Phys. Rev.E 56(6), R6271–R6274. → p 56.Google Scholar
Alcaraz, F. C., and V., Rittenberg, 2008, Directed Abelian algebras and their application to stochastic models, Phys. Rev.E 78(4), 041126 (13 pp). → pp 208, 289.Google ScholarPubMed
Alessandro, B., C., Beatrice, G., Bertotti, and A., Montorsi, 1990a, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory, J. Appl. Phys. 68(6), 2901–2907. → p 62–64.Google Scholar
Alessandro, B., C., Beatrice, G., Bertotti, and A., Montorsi, 1990b, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II. Experiments, J. Appl. Phys. 68(6), 2908–2915. → p 62.Google Scholar
Ali, A. A., and D., Dhar, 1995a, Breakdown of simple scaling in Abelian sandpile models in one dimension, Phys. Rev.E 51(4), R2705–R2708. → p 94.Google ScholarPubMed
Ali, A. A., and D., Dhar, 1995b, Structure of avalanches and breakdown of simple scaling in the Abelian sandpile model in one dimension, Phys. Rev.E 52(5), 4804–4816. → p 94.Google ScholarPubMed
Alstrøm, P., 1988, Mean-field exponents for self-organized critical phenomena, Phys. Rev.A 38(9), 4905–4906. → pp 130, 251, 257, 288.CrossRefGoogle ScholarPubMed
Alstrøm, P., T., Bohr, K., Christensen, H., Flyvbjerg, M. H., Jensen, B., Lautrup, and K., Sneppen (editors), 2004, Complexity and Criticality, PhysicaA 340(4), Proceedings of the Symposium Complexity and Criticality: in Memory of Per Bak (1947–2002), Copenhagen, Denmark, August 21–23, 2003. → p 6.
Altshuler, E., and T. H., Johansen, 2004, Colloquium: experiments in vortex avalanches, Rev. Mod. Phys. 76(2), 471–487. → pp 53, 61.CrossRefGoogle Scholar
Altshuler, E., T. H., Johansen, Y., Paltiel, P., Jin, K. E., Bassler, O., Ramos, Q. Y., Chen, G. F., Reiter, E., Zeldov, and C. W., Chu, 2004, Vortex avalanches with robust statistics observed in superconducting niobium, Phys. Rev.B 70(14), 140505(R) (4 pp), early preprint arXiv:cond-mat/0208266. → pp 60, 61.CrossRefGoogle Scholar
Altshuler, E., O., Ramos, E., Martínez, A. J., Batista-Leyva, A., Rivera, and K. E., Bassler, 2003, Sandpile formation by revolving rivers, Phys. Rev. Lett. 91(1), 014501 (4 pp). → p 192.CrossRefGoogle ScholarPubMed
Altshuler, E., O., Ramos, C., Martínez, L. E., Flores, and C., Noda, 2001, Avalanches in one-dimensional piles with different types of bases, Phys. Rev. Lett. 86(24), 5490–5493. → pp 56, 134.CrossRefGoogle ScholarPubMed
Amaral, L. A. N., A.-L., Barabási, S. V., Buldyrev, S. T., Harrington, S., Havlin, R., Sadr-Lahijany, and H. E., Stanley, 1995, Avalanches and the directed percolation depinning model: experiments, simulations, and theory, Phys. Rev.E 51(5), 4655–4673. → pp 203, 299.Google ScholarPubMed
Amaral, L. A. N., and K. B., Lauritsen, 1996a, Energy avalanches in a rice-pile model, PhysicaA 231(4), 608–614. → p 192.Google Scholar
Amaral, L. A. N., and K. B., Lauritsen, 1996b, Self-organized criticality in a rice-pile model, Phys. Rev.E 54(5), R4512–R4515. → pp 33, 178, 184, 185, 186, 188, 189, 191, 192, 208, 295, 296, 485.Google Scholar
Amaral, L. A. N., and K. B., Lauritsen, 1997, Universality classes for rice-pile models, Phys. Rev.E 56(1), 231–234. → pp 189, 192, 284.Google Scholar
Amit, D. J., and V., Martín-Mayor, 2005, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore), 3rd edition. → p 266.CrossRefGoogle Scholar
Anderson, P. E., H. J., Jensen, L. P., Oliviera, and P., Sibani, 2004, Evolution in complex systems, Complexity 10(1), 49–56. → p 149.CrossRefGoogle Scholar
Anderson, P. W., 1972, More is different, Science 177(4047), 393–396. → pp 4, 6, 13, 19.CrossRefGoogle ScholarPubMed
Anderson, T. W., 1971, The Statistical Analysis of Time Series (John Wiley & Sons, New York, NY, USA). → p 358.Google Scholar
Andrade, R. F. S., H. J., Schellnhuber, and M., Claussen, 1998, Analysis of rainfall records: possible relation to self-organized criticality, PhysicaA 254(3–4), 557–568. → p 71.Google Scholar
Arakawa, A., and W. H., Schubert, 1974, Interaction of a cumulus cloud ensemble with the Large-Scale environment, Part I, J. Atmos. Sci. 31(3), 674–701. → p 72.2.0.CO;2>CrossRefGoogle Scholar
Avnir, D., O., Biham, D., Lidar, and O., Malcai, 1998, Is the geometry of nature fractal?, Science 279(5347), 39–40. → p 53.
Axtell, R. L., 2001, Zipf distribution of U.S. firm sizes, Science 293(5536), 1818–1820. → p 76.CrossRefGoogle ScholarPubMed
Azimi-Tafreshi, N., H., Dashti-Naserabadi, and S., Moghimi-Araghi, 2008, The spatial asymmetric two-dimensional continuous Abelian sandpile model, J. Phys. A: Math. Theor. 41(43), 435002 (14 pp). → p 108.CrossRefGoogle Scholar
Azimi-Tafreshi, N., H., Dashti-Naserabadi, S., Moghimi-Araghi, and P., Ruelle, 2010, The Abelian sandpile model on the honeycomb lattice, J. Stat. Mech. 2010(02), P02004, arXiv:0912.3331v2. → pp 23, 99.Google Scholar
Babcock, K. L., R., Seshadri, and R. M., Westervelt, 1990, Coarsening of cellular domain patterns in magnetic garnet films, Phys. Rev.A 41(4), 1952–1962. → p 62.CrossRefGoogle ScholarPubMed
Babcock, K. L., and R. M., Westervelt, 1989, Elements of cellular domain patterns in magnetic garnet films, Phys. Rev.A 40(4), 2022–2037. → p 62.CrossRefGoogle ScholarPubMed
Babcock, K. L., and R. M., Westervelt, 1990, Avalanches and self-organization in cellular magnetic-domain patterns, Phys. Rev. Lett. 64(18), 2168–2171. → p 62.CrossRefGoogle ScholarPubMed
Bagnoli, F., F., Cecconi, A., Flammini, and A., Vespignani, 2003, Short-period attractors and non-ergodic behavior in the deterministic fixed-energy sandpile model, Europhys. Lett. 63(4), 512–518. → p 333.CrossRefGoogle Scholar
Bak, P., 1990, Is the world at the border of chaos?, AIP Conf. Proc. 213(1), 110–118, Proceedings of Frontiers in Condensed Matter Theory, New York, NY, USA, July 2, 1990. → pp 16, 319.Google Scholar
Bak, P., 1992, Self-organized criticality in non-conservative models, PhysicaA 191(1–4), 41–46. → pp 81, 321, 322.Google Scholar
Bak, P., 1996, How Nature Works (Copernicus, New York, NY, USA). → pp xii, 4, 5, 6, 17, 319.CrossRefGoogle Scholar
Bak, P., 1998, Life laws, Nature 391(6668), 652–653. → p 68.CrossRefGoogle Scholar
Bak, P., and K., Chen, 1991, Self-organized criticality, Sci. Am. 264(1), 26–33. → p 6.CrossRefGoogle Scholar
Bak, P., K., Chen, and M., Creutz, 1989a, Self-organized criticality in the ‘Game of Life’, Nature 342(6251), 780–782. → pp 81, 321, 322, 485.CrossRefGoogle Scholar
Bak, P., K., Chen, J., Scheinkman, and M., Woodford, 1993, Aggregate fluctuations from independent sectoral shocks: self-organized criticality in a model of production and inventory dynamics, Ric. Econ. 47(1), 3 – 30. → p 75.CrossRefGoogle Scholar
Bak, P., K., Chen, and C., Tang, 1990, A forest-fire model and some thoughts on turbulence, Phys. Lett.A 147(5–6), 297–300. → pp 72, 82, 112, 113–116, 321, 485.CrossRefGoogle Scholar
Bak, P., K., Christensen, L., Danon, and T., Scanlon, 2002a, Unified scaling law for earthquakes, Phys. Rev. Lett. 88(17), 178501 (4 pp). → pp 67, 68.CrossRefGoogle ScholarPubMed
Bak, P., K., Christensen, L., Danon, and T., Scanlon, 2002b, Unified scaling law for earthquakes, Proc. Natl. Acad. Sci. USA 99(Suppl. 1), 2509–2513, colloquium. → p 68.Google Scholar
Bak, P., and H., Flyvbjerg, 1992, Self-organization of cellular magnetic-domain patterns, Phys. Rev.A 45(4), 2192–2200. → p 62.CrossRefGoogle ScholarPubMed
Bak, P., and M., Paczuski, 1993, Why nature is complex, Phys. World 6(12), 39–43. → p 6.CrossRefGoogle Scholar
Bak, P., and M., Paczuski, 1995, Complexity, contingency, and criticality, Proc. Natl. Acad. Sci. USA 92(15), 6689–6696. → pp 6, 141.CrossRefGoogle ScholarPubMed
Bak, P., and K., Sneppen, 1993, Punctuated equilibrium and criticality in a simple model of evolution, Phys. Rev. Lett. 71(24), 4083–4086. → pp 17, 68, 82, 141–144, 151, 152, 161, 319, 321, 485.CrossRefGoogle Scholar
Bak, P., and C., Tang, 1989a, Earthquakes as a self-organized critical phenomenon, J. Geophys. Res. 94(B11), 15635–15637. → pp 66, 67, 135, 139, 141.CrossRefGoogle Scholar
Bak, P., and C., Tang, 1989b, Self-organized criticality, Phys. Today 42(1), S-27–S-28, American Institute of Physics Special Report ‘Physics News in 1988’. → p 6.Google Scholar
Bak, P., C., Tang, and K., Wiesenfeld, 1987, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59(4), 381–384. → pp xi, 3, 4, 5, 9, 16, 18, 22, 54, 62, 82, 85–87, 89, 92, 102, 104, 204, 319, 346, 485.CrossRefGoogle ScholarPubMed
Bak, P., C., Tang, and K., Wiesenfeld, 1988, Self-organized criticality, Phys. Rev.A 38(1), 364–374. → pp 16, 62, 87–89, 102.CrossRefGoogle ScholarPubMed
Bak, P., C., Tang, and K., Wiesenfeld, 1989b, Are earthquakes, fractals and 1/f noise selforganized critical phenomena?, in Cooperative Dynamics in Complex Physical Systems, Proceedings of the Second Yukawa International Symposium, Kyoto, Japan, August 24–27, 1988, edited by H., Takayama (Springer-Verlag, Berlin, Germany), volume 43 of Springer Series in Synergetics, pp. 274–279. → p 66.Google Scholar
Ball, P., 2001, Long waits will always try patients, Nature News (online journal), 5 April 2001, doi:10.1038/news010404-16, comments (Smethurst and Williams, 2001), accessed 15 Jun 2010, URL http://www.nature.com/news/2001/010404/full/news010404-16.html. → p 75.Google Scholar
Banavar, J. R., A., Maritan, and A., Rinaldo, 1999, Size and form in efficient transportation networks, Nature 399(6732), 130–132. → p 74.CrossRefGoogle ScholarPubMed
Bandt, C., 2005, The discrete evolution model of Bak and Sneppen is conjugate to the classical contact process, J. Stat. Phys. 120(3/4), 685–693. → p 158.CrossRefGoogle Scholar
Barabási, A.-L., and H. E., Stanley, 1995, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, UK). → pp 47, 178, 195, 203, 207, 266, 267, 299, 301, 313.CrossRefGoogle Scholar
Barbay, J., and C., Kenyon, 2001, On the discrete Bak-Sneppen model of self-organized criticality, in Proceedings of the twelfth annual ACM-SIAM symposium on Discrete Algorithms 2001, Washington, DC, USA, January 7–9, 2001, pp. 928–944. → p 157.Google Scholar
Barber, M. N., 1983, Finite-size scaling, in Phase Transitions and Critical Phenomena, edited by C., Domb and J. L., Lebowitz (Academic Press, New York, NY, USA), volume 8, pp. 145–266. → pp 12, 27.Google Scholar
Barenblatt, G. I., 1996, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, UK). → pp 25, 27, 348.CrossRefGoogle Scholar
Barker, G. C., and A., Mehta, 1996, Rotated sandpiles: the role of grain reorganization and inertia, Phys. Rev.E 53(6), 5704–5713. → p 56.Google ScholarPubMed
Barker, G. C., and A., Mehta, 2000, Avalanches at rough surfaces, Phys. Rev.E 61(6), 6765–6772. → p 56.Google ScholarPubMed
Barkhausen, H., 1919, Zwei mit Hilfe der neuen Verstüarker entdeckte Erscheinungen, Phys. Z. 20, 401–403. → p 62.Google Scholar
Barrat, A., A., Vespignani, and S., Zapperi, 1999, Fluctuations and correlations in sandpile models, Phys. Rev. Lett. 83(10), 1962–1965. → p 334.CrossRefGoogle Scholar
Bartolozzi, M., D. B., Leinweber, and A. W., Thomas, 2005, Self-organized criticality and stock market dynamics: an empirical study, PhysicaA 350(2–4), 451 – 465. → p 75.Google Scholar
Bassler, K. E., and M., Paczuski, 1998, Simple model of superconducting vortex avalanches, Phys. Rev. Lett. 81(17), 3761–3764. → p 61.CrossRefGoogle Scholar
Batterman, R. W., 2002, The Devil in the Detail (Oxford University Press, New York, NY, USA). → p 6.Google Scholar
Batty, M., and P., Longley, 1994, Fractal Cities (Academic Press, London, UK). → p 76.Google Scholar
Batty, M., and Y., Xie, 1999, Self-organized criticality and urban development, Discrete Dyn. Nat. Soc. 3, 109–124. → p 76.CrossRefGoogle Scholar
Bean, C. P., 1962, Magnetization of hard superconductors, Phys. Rev. Lett. 8(6), 250–253. → p 58.CrossRefGoogle Scholar
Bean, C. P., 1964, Magnetization of high-field superconductors, Rev. Mod. Phys. 36(1), 31–39. → pp 58, 62.CrossRefGoogle Scholar
Becker, V., and H. K., Janssen, 1994, Current-current correlation function in a driven diffusive system with nonconserving noise, Phys. Rev.E 50(2), 1114–1122. → p 298.Google Scholar
Bédard, C., H., Kröoger, and A., Destexhe, 2006, Does the 1/f frequency scaling of brain signals reflect self-organized critical states?, Phys. Rev. Lett. 97(11), 118102 (4 pp). → p 70.CrossRefGoogle ScholarPubMed
Beggs, J. M., 2008, The criticality hypothesis: how local cortical networks might optimize information processing, Philos. Trans. R. Soc. London, Ser.A 366(1864), 329–343. → pp 70, 319.CrossRefGoogle ScholarPubMed
Beggs, J. M., and D., Plenz, 2003, Neuronal avalanches in neocortical circuits, J. Neurosci. 23(35), 11167–11177. → pp 70, 71.CrossRefGoogle ScholarPubMed
Beggs, J. M., and D., Plenz, 2004, Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures, J. Neurosci. 24(22), 5216–5229. → p 70.CrossRefGoogle ScholarPubMed
Behnia, K., C., Capan, D., Mailly, and B., Etienne, 2000, Internal avalanches in a pile of superconducting vortices, Phys. Rev.B 61(6), R3815–R3818. → p 60.CrossRefGoogle Scholar
Behnia, K., C., Capan, D., Mailly, and B., Etienne, 2001, Avalanches in a pile of superconducting vortices, J. Magn. Magn. Mater. 226–230(Part 1), 370–371. → p 60.Google Scholar
ben-Avraham, D., and S., Havlin, 2000, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, UK). → pp 243, 248, 249.CrossRefGoogle Scholar
ben-Avraham, D., and J., Köohler, 1992, Mean-field (n,m)-cluster approximation for lattice models, Phys. Rev.A 45(12), 8358–8370. → pp 170, 181, 250, 394.CrossRefGoogle ScholarPubMed
Ben-Hur, A., and O., Biham, 1996, Universality in sandpile models, Phys. Rev.E 53(2), R1317–R1320. → pp 19, 23, 43, 92, 101, 164, 165, 167, 168, 171, 174, 177, 183, 268, 291, 292.Google ScholarPubMed
Ben Hur, A., R., Hallgass, and V., Loreto, 1996, Renormalization procedure for directed self-organized critical models, Phys. Rev.E 54(2), 1426–1432. → pp 268, 286.Google ScholarPubMed
Bengrine, M., A., Benyoussef, A. E., Kenz, M., Loulidi, and F., Mhirech, 1999a, A sharp transition between a trivial 1D BTW model and self-organized critical rice-pile model, Eur. Phys. J.B 12(1), 129–133, numerics may not be independent from Bengrine et al. (1999b). →pp 189, 193, 198, 200, 284, 403.CrossRefGoogle Scholar
Bengrine, M., A., Benyoussef, F., Mhirech, and S. D., Zhang, 1999b, Disorder-induced phase transition in a one-dimensional model of rice-pile, PhysicaA 272(1–2), 1–11, numerics may not be independent from Bengrine et al. (1999a). → pp 189, 198, 403.Google Scholar
Bentley, R. A., and H. D. G., Maschner, 1999, Subtle nonlinearity in popular album charts, Adv. Complex Syst. 2(3), 197–208. → p 76.Google Scholar
Bentley, R. A., and H. D. G., Maschner, 2001, Stylistic change as a self-organized critical phenomenon: an archaeological study in complexity, J. Archaeol. Method Theory 8(1), 35–66. → p 76.CrossRefGoogle Scholar
Benton, M. J., 1993, The Fossil Record 2 (Chapman and Hall, London, UK). → p 69.Google Scholar
Benton, M. J., 1995, Diversification and extinction in the history of life, Science 268(5207), 52–58. → pp 68, 69.CrossRefGoogle ScholarPubMed
Berg, B. A., 1992, Double Jackknife bias-corrected estimators, Comput. Phys. Commun. 69(1), 7–14. → p 216.CrossRefGoogle Scholar
Berg, B. A., 2004, Markov Chain Monte Carlo Simulations and Their Statistical Analysis (World Scientific, Singapore). → pp 220, 358.CrossRefGoogle Scholar
Bertotti, G., G., Durin, and A., Magni, 1994, Scaling aspects of domain wall dynamics and Barkhausen effect in ferromagnetic materials, J. Appl. Phys. 75(10), 5490–5492, Proceedings of the 38th Annual Conference On Magnetism and Magnetic Materials, Minneapolis, MN, USA, November 15–18, 1993. → p 64.CrossRefGoogle Scholar
Bhagavatula, R., G., Grinstein, Y., He, and C., Jayaprakash, 1992, Algebraic correlations in conserving chaotic systems, Phys. Rev. Lett. 69(24), 3483–3486. → p 302.CrossRefGoogle ScholarPubMed
Bhattacharjee, S. M., and F., Seno, 2001, A measure of data collapse for scaling, J. Phys. A: Math. Gen. 34(33), 6375–6380. → p 238.CrossRefGoogle Scholar
Biham, O., E., Milshtein, and O., Malcai, 2001, Evidence for universality within the classes of deterministic and stochastic sandpile models, Phys. Rev.E 63(6), 061309 (8 pp). → pp 23, 100, 106, 165, 168, 178, 183, 269, 284, 291.Google ScholarPubMed
Biham, O., E., Milshtein, and S., Solomon, 1998, Symmetries and universality classes in conservative sandpile models, arXiv:cond-mat/9805206 (unpublished). → pp 23, 106.
Binder, K., 1981a, Critical Properties from Monte Carlo coarse graining and renormalization, Phys. Rev. Lett. 47(9), 693–696. → pp 39, 49, 69, 134, 227.CrossRefGoogle Scholar
Binder, K., 1981b, Finite Size Scaling Analysis of Ising Model Block Distribution Functions, Z. Phys.B 43, 119–140. → pp 39, 227.CrossRefGoogle Scholar
Binder, K., and D. W., Heermann, 1997, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, Germany), 3rd edition. → pp 213, 220, 358, 361.CrossRefGoogle Scholar
Birkeland, K.W., and C. C., Landry, 2002, Power-laws and snow avalanches, Geophys. Res. Lett. 29(11), 1554 (3 pp). → p 194.CrossRefGoogle Scholar
Blanchard, P., B., Cessac, and T., Krüuger, 1997, A dynamical system approach to SOC models of Zhang's type, J. Stat. Phys. 88(1/2), 307–318. → p 110.CrossRefGoogle Scholar
Blanchard, P., B., Cessac, and T., Krüger, 2000, What can one learn about self-organized criticality from dynamical systems theory?, J. Stat. Phys. 98(1/2), 375–404. → p 141.CrossRefGoogle Scholar
Boettcher, S., and M., Paczuski, 1996, Exact results for spatiotemporal correlations in a self-organized critical model of punctuated equilibrium, Phys. Rev. Lett. 76(3), 348–351. → pp 152, 157, 307.CrossRefGoogle Scholar
Boettcher, S., and M., Paczuski, 1997a, Aging in a model of self-organized criticality, Phys. Rev. Lett. 79(5), 889–892. → p 149.CrossRefGoogle Scholar
Boettcher, S., and M., Paczuski, 1997b, Broad universality in self-organized critical phenomena, PhysicaD 107(2–4), 171–173, Proceedings of the 16th Annual International Conference of the Center for Nonlinear Studies, Los Alamos, NM, USA, May 13–17, 1996, largely identical to Paczuski and Boettcher (1996). → p 440.Google Scholar
Boettcher, S., and M., Paczuski, 2000, dc = 4 is the upper critical dimension for the Bak-Sneppen model, Phys. Rev. Lett. 84(10), 2267–2270, arXiv:cond-mat/9911273v2. → pp 144, 152, 154, 155, 161.CrossRefGoogle ScholarPubMed
Boffetta, G., V., Carbone, P., Giuliani, P., Veltri, and A., Vulpiani, 1999, Power laws in solar flares: self-organized criticality or turbulence?, Phys. Rev. Lett. 83(22), 4662–4665. → p 72.CrossRefGoogle Scholar
Boguñá, M., and Á., Corral, 1997, Long-tailed trapping times and Leéy flights in a selforganized critical granular system, Phys. Rev. Lett. 78(26), 4950–4953. → pp 193, 195, 196.CrossRefGoogle Scholar
Bonabeau, E., and P., Lederer, 1994, On 1/f power spectra, J. Phys. A: Math. Gen. 27(9), L243–L250. → p 15.CrossRefGoogle Scholar
Bonachela, J. A., 2008, Universality in Self-Organized Criticality, Ph.D. Thesis, Departmento de Electromagnetismo y Fisíca de la Materia & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain, accessed 12 September 2009, URL http://hera.ugr.es/tesisugr/17706312.pdf. → pp 44, 92, 168, 177, 184, 187–189, 209, 247, 265, 284, 293, 296, 328, 334, 393.Google Scholar
Bonachela, J. A., H., Chaté, I., Dornic, and M. A., Muñoz, 2007, Absorbing states and elastic interfaces in random media: two equivalent descriptions of self-organized criticality, Phys. Rev. Lett. 98(15), 155702 (4 pp). → pp 176, 179, 180, 183, 300.CrossRefGoogle ScholarPubMed
Bonachela, J. A., and M. A., Muñoz, 2007, How to discriminate easily between directed-percolation and Manna scaling, PhysicaA 384(1), 89–93, Proceedings of the International Conference on Statistical Physics, Raichak and Kolkata, India, January 5–9, 2007. → pp 177, 179, 293, 296.Google Scholar
Bonachela, J. A., and M. A., Muñoz, 2008, Confirming and extending the hypothesis of universality in sandpiles, Phys. Rev.E 78(4), 041102 (8 pp), arXiv:0806.4079. → pp 177–179, 183, 188, 293, 296, 305, 331.Google ScholarPubMed
Bonachela, J. A., and M. A., Muñoz, 2009, Self-organization without conservation: true or just apparent scale-invariance?, J. Stat. Mech. 2009(09), P09009 (37 pp). → pp 111, 265, 328, 334, 335.Google Scholar
Bonachela, J. A., J. J., Ramasco, H., Chaté, I., Dornic, and M. A., Muñoz, 2006, Sticky grains do not change the universality class of isotropic sandpiles, Phys. Rev.E 74(5), 050102(R) (4 pp). → pp 178, 179, 296.Google Scholar
Bons, P. D., and B. P., van Milligen, 2001, New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks, Geology 29(10), 919–922. → pp 65, 193.2.0.CO;2>CrossRefGoogle Scholar
Bottani, S., and B., Delamotte, 1997, Self-organized criticality and synchronization in pulse coupled relaxation osillator system; the Olami, Feder and Christensen and the Feder and Feder model, PhysicaD 103(1–4), 430–441. → pp 133, 138, 140.Google Scholar
Bouchaud, J.-P., M. E., Cates, J. R., Prakash, and S. F., Edwards, 1994, A model for the dynamics of sandpile surfaces, J. Phys. I (France) 4, 1383–1410. → pp 292, 299.CrossRefGoogle Scholar
Bouchaud, J.-P., M. E., Cates, J. R., Prakash, and S. F., Edwards, 1995, Hysteresis and metastability in a continuum sandpile model, Phys. Rev. Lett. 74(11), 1982–1985. → p 56.CrossRefGoogle Scholar
Boulter, C. J., and G., Miller, 2003, Nonuniversality and scaling breakdown in a nonconservative earthquake model, Phys. Rev.E 68(5), 056108 (6 pp). → p 137.Google Scholar
Bramwell, S. T., K., Christensen, J.-Y., Fortin, P. C. W., Holdsworth, H. J., Jensen, S., Lise, J. M., López, M., Nicodemi, J.-F., Pinton, and M., Sellitto, 2000, Universal fluctuations in correlated systems, Phys. Rev. Lett. 84(17), 3744–3747, arXiv:cond-mat/991225. → pp 134, 149, 458.CrossRefGoogle ScholarPubMed
Bramwell, S. T., K., Christensen, J.-Y., Fortin, P. C. W., Holdsworth, H. J., Jensen, S., Lise, J. M., López, M., Nicodemi, J.-F., Pinton, and M., Sellitto, 2001, Bramwell et al. reply:, Phys. Rev. Lett. 87(18), 188902 (1 p), reply to comment (Zheng and Trimper, 2001). → p 458.CrossRefGoogle Scholar
Bramwell, S. T., P. C. W., Holdsworth, and J.-F., Pinton, 1998, Universality of rare fluctuations in turbulence and critical phenomena, Nature 396, 552–554. → p 134.CrossRefGoogle Scholar
Brandt, S., 1998, Data Analysis (Springer-Verlag, Berlin, Germany). → pp 214, 358.Google Scholar
Bretz, M., J. B., Cunningham, P. L., Kurczynski, and F., Nori, 1992, Imaging of avalanches in granular materials, Phys. Rev. Lett. 69(16), 2431–2434. → pp 55, 57.CrossRefGoogle ScholarPubMed
Brézin, E., and J., Zinn-Justin, 1985, Finite size effects in phase transitions, Nucl. Phys.B 257 [FS14], 867–893. → p 251.CrossRefGoogle Scholar
British Library Science Technology and Business (STB), 2001, Welfare Reform on the Web (June 2001): National Health Service – Reform – General, Welfare Reform Digest No. 22, http://www.bl.uk/welfarereform/issue22/nhs-rfrm.html, summary of Smethurst and Williams (2001), accessed 4 March 2010. → p 75.
Broadbent, S. R., 1954, Discussion on Symposium on Monte Carlo Methods, J. R. Stat. Soc. B, Stat. Method. 16(1), 68. → p 319.Google Scholar
Broadbent, S. R., and J. M., Hammersley, 1957, Percolation processes I. crystals and mazes, Proc. Cambridge. Philos. Soc. 53(03), 629–641. → p 319.CrossRefGoogle Scholar
Bröoker, H.-M., and P., Grassberger, 1995, Mean-field behaviour in a local low-dimensional model, Europhys. Lett. 30(6), 319–324. → pp 250, 328.CrossRefGoogle Scholar
Bröoker, H.-M., and P., Grassberger, 1997, Random neighbor theory of the Olami-Feder-Christensen earthquake model, Phys. Rev.E 56(4), 3944–3952. → pp 129, 131, 133, 251, 257, 261, 328.Google Scholar
Bröoker, H.-M., and P., Grassberger, 1999, SOC in a population model with global control, PhysicaA 267(3–4), 453 – 470, arXiv:cond-mat/9902195. → p 335.Google Scholar
Brower, R. C., M. A., Furman, and M., Moshe, 1978, Critical exponents for the Reggeon quantum spin model, Phys. Lett.B 76(2), 213 – 219. → pp 142, 264.CrossRefGoogle Scholar
Brown, J. H., and G. B., West (editors), 2000, Scaling in Biology, Santa Fe Institute Studies on the Sciences of Complexity (Oxford University Press, New York, NY, USA). → p 53.
Brown, S. R., C. H., Scholz, and J. B., Rundle, 1991, A simplified spring-block model of earthquakes, Geophys. Res. Lett. 18(2), 215–218. → p 126.CrossRefGoogle Scholar
Bruinsma, R., and G., Aeppli, 1984, Interface motion and nonequilibrium properties of the random-field Ising model, Phys. Rev. Lett. 52(17), 1547–1550. → pp 205, 299, 315.CrossRefGoogle Scholar
Buldyrev, S. V., A.-L., Barabási, F., Caserta, S., Havlin, H. E., Stanley, and T., Vicsek, 1992a, Anomalous interface roughening in porous media: experiment and model, Phys. Rev.A 45(12), R8313–R8316. → pp 149, 203, 294, 301.CrossRefGoogle ScholarPubMed
Buldyrev, S. V., N. V., Dokholyan, A. L., Goldberger, S., Havlin, C. K., Peng, H. E., Stanley, and G. M., Viswanathan, 1998, Analysis of DNA sequences using methods of statistical physics, PhysicaA 249(1–4), 430 – 438. → p 74.Google Scholar
Buldyrev, S. V., J., Ferrante, and F. R., Zypman, 2006, Dry friction avalanches: experiment and theory, Phys. Rev.E 74(6), 066110 (12 pp). → p 65.Google ScholarPubMed
Buldyrev, S. V., A. L., Goldberger, S., Havlin, C.-K., Peng, M., Simons, F., Sciortino, and H. E., Stanley, 1993, Long-range fractal correlations in DNA, Phys. Rev. Lett. 71(11), 1776, comment on Voss (1992). → pp 74, 455.CrossRefGoogle ScholarPubMed
Buldyrev, S. V., S., Havlin, and H. E., Stanley, 1992b, Anisotropic percolation and the d-dimensional surface roughening problem, PhysicaA 200(1–4), 200–211. → p 203.Google Scholar
Bunzarova, N. Z., 2010, Statistical properties of directed avalanches, Phys. Rev.E 82(3), 031116 (14 pp). → pp 288, 290.Google ScholarPubMed
Burkhardt, T. W., and J. M. J., van Leeuwen (editors), 1982, Real-Space Renormalization, Topics in Current Physics (Springer-Verlag, Berlin, Germany). → pp 101, 121, 266.CrossRef
Burlando, B., 1990, The fractal dimension of taxonomic systems, J. Theor. Biol. 146(1), 99–114. → p 69.CrossRefGoogle Scholar
Burlando, B., 1993, The fractal geometry of evolution, J. Theor. Biol. 163(2), 161–172. → p 69.CrossRefGoogle Scholar
Burridge, R., and L., Knopoff, 1967, Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57(3), 341–371. → pp 125, 127, 128, 206, 485.Google Scholar
Butkovskiy, A. G., 1982, Green's Functions and Transfer Functions Handbook (Ellis Horwood, Chichester, UK). → p 249.Google Scholar
Cafiero, R., P. De Los, Rios, F.-M., Dittes, A., Valleriani, and J. L., Vega, 1998, Power-law behavior in a nonextremal Bak-Sneppen model, Phys. Rev.E 58(3), 3993–3996. → p 150.Google Scholar
Cafiero, R., A., Gabrielli, M., Marsili, and L., Pietronero, 1996, Theory of extremal dynamics with quenched disorder: invasion percolation and related models, Phys. Rev.E 54(2), 1406–1425. → p 150.Google ScholarPubMed
Cafiero, R., V., Loreto, L., Pietronero, A., Vespignani, and S., Zapperi, 1995, Local rigidity and self-organized criticality for avalanches, Europhys. Lett. 29(2), 111–116. → pp 109, 204, 267, 344.CrossRefGoogle Scholar
Cafiero, R., A., Valleriani, and J. L., Vega, 1999, Damage-spreading in the parallel Bak-Sneppen model, Eur. Phys. J.B 7(4), 505–508. → pp 156, 157.CrossRefGoogle Scholar
Caldarelli, G., F. D. Di, Tolla, and A., Petri, 1996a, Self-organization and annealed disorder in a fracturing process, Phys. Rev. Lett. 77(12), 2503–2506. → p 65.CrossRefGoogle Scholar
Caldarelli, G., C., Tebaldi, and A. L., Stella, 1996b, Branching processes and evolution at the ends of a food chain, Phys. Rev. Lett. 76(26), 4983–4986. → p 257.CrossRefGoogle ScholarPubMed
Cannelli, G., R., Cantelli, and F., Cordero, 1993, Self-organized criticality of the fracture processes associated with hydrogen precipitation in niobium by acoustic emission, Phys. Rev. Lett. 70(25), 3923–3926. → p 64.CrossRefGoogle ScholarPubMed
Canning, D., L. A. N., Amaral, Y., Lee, M., Meyer, and H. E., Stanley, 1998, Scaling the volatility of GDP growth rates, Econ. Lett. 60(3), 335 – 341. → p 75.CrossRefGoogle Scholar
Carbone, V., R., Cavazzana, V., Antoni, L., Sorriso-Valvo, E., Spada, G., Regnoli, P., Giuliani, N., Vianello, F., Lepreti, R., Bruno, E., Martines, and P., Veltri, 2002, To what extent can dynamical models describe statistical features of turbulent flows?, Europhys. Lett. 58(3), 349–355. → p 72.CrossRefGoogle Scholar
Cardy, J. L. (editor), 1988, Finite-Size Scaling (North-Holland, Amsterdam, The Netherlands). → pp 12, 27.
Cardy, J. L., and R. L., Sugar, 1980, Directed percolation and Reggeon field theory, J. Phys. A: Math. Gen. 13(12), L423–L427. → p 264.CrossRefGoogle Scholar
Carlson, J. M., 1991, Time intervals between characteristic earthquakes and correlations with smaller events: an analysis based on a mechanical model of a fault, J. Geophys. Res. 96(B3). → p 66.CrossRefGoogle Scholar
Carlson, J. M., J. T., Chayes, E. R., Grannan, and G. H., Swindle, 1990a, Self-orgainzed criticality and singular diffusion, Phys. Rev. Lett. 65(20), 2547–2550. → pp 343, 344.CrossRefGoogle ScholarPubMed
Carlson, J. M., J. T., Chayes, E. R., Grannan, and G. H., Swindle, 1990b, Self-organized criticality in sandpiles: nature of the critical phenomenon, Phys. Rev.A 42(4), 2467–2470. → p 343.CrossRefGoogle ScholarPubMed
Carlson, J. M., and J., Doyle, 1999, Highly optimized tolerance: a mechanism for power laws in designed systems, Phys. Rev.E 60(2), 1412–1427. → p 345.Google ScholarPubMed
Carlson, J. M., and J., Doyle, 2000, Highly optimized tolerance: robustness and design in complex systems, Phys. Rev. Lett. 84(11), 2529–2532. → p 345.CrossRefGoogle ScholarPubMed
Carlson, J. M., and J. S., Langer, 1989, Properties of earthquakes generated by fault dynamics, Phys. Rev. Lett. 62(22), 2632–2635. → p 125.CrossRefGoogle ScholarPubMed
Carlson, J. M., J. S., Langer, and B. E., Shaw, 1994, Dynamics of earthquake faults, Rev. Mod. Phys. 66(2), 657–670. → p 66.CrossRefGoogle Scholar
Carreras, B. A., V. E., Lynch, D. E., Newman, and G. M., Zaslavsky, 1999, Anomalous diffusion in a running sandpile model, Phys. Rev.E 60(4), 4770–4778. → pp 193, 195.Google Scholar
Carreras, B. A., D. E., Newman, I., Dobson, and A. B., Poole, 2004, Evidence for self-organized criticality in a time series of electric power system blackouts, IEEE Trans. Circuits Syst. I 51(9), 1733–1740. → p 76.CrossRefGoogle Scholar
Carreras, B. A., D., Newman, V. E., Lynch, and P. H., Diamond, 1996, A model realization of self-organized criticality for plasma confinement, Phys. Plasmas 3(8), 2903–2911. → pp 72, 193.CrossRefGoogle Scholar
Carrillo, L., L., Mañosa, J., Ortín, A., Planes, and E., Vives, 1998, Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions, Phys. Rev. Lett. 81(9), 1889–1892. → p 63.CrossRefGoogle Scholar
Casartelli, M., L., Dall'Asta, A., Vezzani, and P., Vivo, 2006, Dynamical invariants in the deterministic fixed-energy sandpile, Eur. Phys. J.B 52(1), 91–105, arXiv:cond-mat/0502208v2. → p 334.CrossRefGoogle Scholar
Černák, J., 2002, Self-organized criticality: robustness of scaling exponents, Phys. Rev.E 65(4), 046141 (6 pp). → pp 88, 135.Google ScholarPubMed
Cessac, B., P., Blanchard, and T., Krüger, 2001, Lyapunov exponents and transport in the Zhang model of self-organized criticality, Phys. Rev.E 64(1), 016133 (16 pp). → p 110.Google ScholarPubMed
Ceva, H., 1995, Influence of defects in a coupled map lattice modeling earthquakes, Phys. Rev.E 52(1), 154–158. → p 134.Google Scholar
Ceva, H., 1998, On the asymptotic behavior of an earthquake model, Phys. Lett.A 245(5), 413–418. → pp 128, 129, 134–136, 140, 358, 367.CrossRefGoogle Scholar
Chabanol, M.-L., and V., Hakim, 1997, Analysis of a dissipative model of self-organized criticality with random neighbors, Phys. Rev.E 56(3), R2343–R2346. → pp 131, 328.Google Scholar
Chaikin, P. M., and T. C., Lubensky, 1995, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, UK). → p 47.CrossRefGoogle Scholar
Chang, T., 1992, Low-dimensional behavior and symmetry breaking of stochastic systems near criticality – can these effects be observed in space and in the laboratory?, IEEE Trans. Plasma Sci. 20(6), 691–694. → p 72.CrossRefGoogle Scholar
Chang, T., 1999, Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail, Phys. Plasmas 6(11), 4137–4145. → p 72.CrossRefGoogle Scholar
Chapman, S. C., 2000, Inverse cascade avalanche model with limit cycle exhibiting period doubling, intermittency, and self-similarity, Phys. Rev.E 62(2), 1905–1911. → p 193.Google ScholarPubMed
Chapman, S. C., R. O., Dendy, and B., Hnat, 2001, Sandpile model with Tokamaklike enhanced confinement phenomenology, Phys. Rev. Lett. 86(13), 2814–2817. → pp 72, 193, 209.CrossRefGoogle ScholarPubMed
Chapman, S. C., R. O., Dendy, and G., Rowlands, 1999, A sandpile model with dual scaling regimes for laboratory, space and astrophysical plasmas, Phys. Plasmas 6(11), 4169–4177. → p 72.CrossRefGoogle Scholar
Chatto, A., R., Lee, R., Duncan, and D., Goodstein, 2007, Experiments on the self-organized critical state of 4He, J. Low Temp. Phys. 148(5), 519–526. → p 62.CrossRefGoogle Scholar
Chau, H. F., 1994, Generalized Abelian sandpile model, PhysicaA 205(1–3), 292–298. → p 101.Google Scholar
Chau, H. F., and K. S., Cheng, 1992, Relations of 1/f and 1/f2 power spectra to self-organized criticality, Phys. Rev.A 46(6), R2981–R2983. → p 185.CrossRefGoogle ScholarPubMed
Chau, H. F., and K. S., Cheng, 1993, Generalized Abelian sandpile model, J. Math. Phys. 34(11), 5109–5117. → p 101.CrossRefGoogle Scholar
Chauve, P., and P. Le, Doussal, 2001, Exact multilocal renormalization group and applications to disordered problems, Phys. Rev.E 64(5), 051102 (27 pp). → pp 266, 267.Google Scholar
Che, X., and H., Suhl, 1990, Magnetic domain patterns as self-organizing critical systems, Phys. Rev. Lett. 64(14), 1670–1673. → p 62.CrossRefGoogle ScholarPubMed
Chen, C.-C., and M., den Nijs, 2002, Interface view of directed sandpile dynamics, Phys. Rev.E 65(3), 031309 (4 pp). → p 299.Google ScholarPubMed
Chen, C.-F., and C.-Y., Lin, 2009, Scalings of amodified Manna model with bulk dissipation, Int. J. Mod. Phys.C 20(2). → p 169.CrossRefGoogle Scholar
Chen, D.-M., S., Wu, A., Guo, and Z. R., Yang, 1995, Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons, J. Phys. A: Math. Gen. 28(18), 5177–5182. → p 70.CrossRefGoogle Scholar
Chen, K., P., Bak, and M. H., Jensen, 1990, A deterministic critical forest fire model, Phys. Lett.A 149(4), 207–210. → pp 114, 116.CrossRefGoogle Scholar
Chen, K., P., Bak, and S. P., Obukhov, 1991, Self-organized criticality in a crack-propagation model of earthquakes, Phys. Rev.A 43(2), 625–630. → pp 66, 129.Google Scholar
Chen, Y., M., Ding, and J. A. S., Kelso, 1997, Long memory processes (1/fα type) in human coordination, Phys. Rev. Lett. 79(22), 4501–4504. → p 76.CrossRefGoogle Scholar
Chessa, A., E., Marinari, and A., Vespignani, 1998, Energy constrained sandpile models, Phys. Rev. Lett. 80(19), 4217–4220. → pp 171, 305–307, 331, 333, 334, 340.CrossRefGoogle Scholar
Chessa, A., H. E., Stanley, A., Vespignani, and S., Zapperi, 1999a, Universality in sandpiles, Phys. Rev.E 59(1), R12–R15, numerics may not be independent from Chessa et al. (1999b). → pp 30, 31, 39, 43, 44, 92, 103, 164, 166, 168, 183.Google Scholar
Chessa, A., A., Vespignani, and S., Zapperi, 1999b, Critical exponents in stochastic sandpile models, Comput. Phys. Commun. 121–122, 299–302. → pp 168, 183, 284, 409.Google Scholar
Chialvo, D. R., 2004, Critical brain networks, PhysicaA 340(4), 756–765, Proceedings of the Symposium Complexity and Criticality: in Memory of Per Bak (1947–2002), Copenhagen, Denmark, August 21–23, 2003. → p 71.Google Scholar
Chianca, C. V., J. S. Sá, Martins, and P. M. C., de Oliveira, 2009, Mapping the train model for earthquakes onto the stochastic sandpile model, Eur. Phys. J.B 68(4), 549–555. → pp 178, 206.CrossRefGoogle Scholar
Christensen, K., 1992, Self-Organization in Models of Sandpiles, Earthquakes, and Flashing Fireflies, Ph.D. Thesis, Institute of Physics and Astronomy, University of Aarhus, Denmark. → pp 88, 99, 104, 128, 129, 134, 290.Google Scholar
Christensen, K., 1993, Christensen replies, Phys. Rev. Lett. 71(8), 1289, reply to comment (Klein and Rundle, 1993). → pp 136, 428.CrossRefGoogle ScholarPubMed
Christensen, K., 2004, On self-organised criticality in one dimension, PhysicaA 340(4), 527–534, Proceedings of the Symposium Complexity and Criticality: in Memory of Per Bak (19472002), Copenhagen, Denmark, August 21–23, 2003. → pp 184, 188–190, 209, 236, 315.Google Scholar
Christensen, K., 2008, personal communication. → p 185.
Christensen, K., Á., Corral, V., Frette, J., Feder, and T., Jøssang, 1996, Tracer dispersion in a self-organized critical system, Phys. Rev. Lett. 77(1), 107–110. → pp 23, 58, 82, 180, 183, 186, 189, 192, 193, 194–196, 197, 198, 485.CrossRefGoogle Scholar
Christensen, K., R., Donangelo, B., Koiller, and K., Sneppen, 1998, Evolution of random networks, Phys. Rev. Lett. 81(11), 2380–2383. → p 159.CrossRefGoogle Scholar
Christensen, K., N., Farid, G., Pruessner, and M., Stapleton, 2008, On the scaling of probability density functions with apparent power-lawexponents less than unity, Eur. Phys. J.B 62(3), 331–336. → pp 27, 29, 32, 57, 58, 192, 391.CrossRefGoogle Scholar
Christensen, K., H., Flyvbjerg, and Z., Olami, 1993, Self-organized critical forest-fire model: mean-field theory and simulation results in 1 to 6 dimensions, Phys. Rev. Lett. 71(17), 2737–2740. → pp 120, 121, 124, 125, 251.CrossRefGoogle Scholar
Christensen, K., H. C., Fogedby, and H. J., Jensen, 1991, Dynamical and spatial aspects of sandpile cellular automata, J. Stat. Phys. 63(3/4), 653–684. → pp 16, 42, 92, 93, 102, 104.CrossRefGoogle Scholar
Christensen, K., D., Hamon, H. J., Jensen, and S., Lise, 2001, Comment on ‘self-organized criticality in the Olami-Feder-Christensen model’, Phys. Rev. Lett. 87(3), 039801, comment on (de Carvalho and Prado, 2000), reply (de Carvalho and Prado, 2001). → pp 131, 413.CrossRefGoogle ScholarPubMed
Christensen, K., and N. R., Moloney, 2005, Complexity and Criticality (Imperial College Press, London, UK). → pp 6, 128, 129, 136, 138, 139, 220.CrossRefGoogle Scholar
Christensen, K., N. R., Moloney, O., Peters, and G., Pruessner, 2004, Avalanche behavior in an absorbing state Oslo model, Phys. Rev.E 70(6), 067101 (4 pp), arXiv:cond-mat/0405454. → pp 248, 282, 306, 307, 333, 339, 340.Google Scholar
Christensen, K., and Z., Olami, 1992a, Scaling, phase transitions, and nonuniversality in a self-organized critical cellular-automaton model, Phys. Rev.A 46(4), 1829–1838. → pp 68, 128, 129, 133, 135, 136, 138, 139, 141.CrossRefGoogle Scholar
Christensen, K., and Z., Olami, 1992b, Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model of earthquakes, J. Geophys. Res. 97(B6), 8729–8735. → pp 67, 68, 76, 128.CrossRefGoogle Scholar
Christensen, K., and Z., Olami, 1993, Sandpile models with and without an underlying spatial structure, Phys. Rev.E 48(5), 3361–3372. → pp 43, 103, 131, 247, 290.Google ScholarPubMed
Christensen, K., Z., Olami, and P., Bak, 1992, Deterministic 1/f noise in nonconservative models of self-organized criticality, Phys. Rev. Lett. 68(16), 2417–2420. → pp 15, 135.CrossRefGoogle Scholar
Chua, A., 2003, Creation and annihilation operators for the Manna model, personal communication (unpublished). → p 173.
Chua, A., and K., Christensen, 2002, Exact enumeration of the critical states in the Oslo Model, arXiv:cond-mat/0203260v2 (unpublished). → pp 186, 187, 343.
Chua, A., and G., Pruessner, 2003, The Markov matrix of the Oslo rice pile (unpublished). → p 202.
Cieplak, M., and M. O., Robbins, 1988, Dynamical transition in quasistatic fluid invasion in porous media, Phys. Rev. Lett. 60(20), 2042–2045. → p 301.CrossRefGoogle ScholarPubMed
Ciliberto, S., and C., Laroche, 1994, Experimental evidence of self organized criticality in the stick-slip dynamics of two rough elastic surfaces, J. Phys. I (France) 4, 223–235. → p 65.CrossRefGoogle Scholar
Clar, S., B., Drossel, and F., Schwabl, 1994, Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev.E 50(2), 1009–1018. → pp 120, 121, 123–125.Google ScholarPubMed
Clar, S., B., Drossel, and F., Schwabl, 1996, Forest fires and other examples of self-organized criticality, J. Phys.: Condens. Matter 8(37), 6803–6824. →p 118.Google Scholar
Clauset, A., C. R., Shalizi, and M. E. J., Newman, 2009, Power-law distributions in empirical data, SIAM Rev. 51(4), 661–703, arXiv:0706.1062v2. → pp 220, 229.CrossRefGoogle Scholar
Coniglio, A., and W., Klein, 1980, Clusters and Ising critical droplets: a renormalisation group approach, J. Phys. A: Math. Gen. 13(8), 2775–2780. → p 115.CrossRefGoogle Scholar
Cormen, T. H., C. E., Leiserson, and R. L., Rivest, 1996, Introduction to Algorithms (MIT Press, Cambridge, MA, USA). → pp 123, 160, 358, 367.Google Scholar
Corral, Á., 2003, Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev.E 68(3), 035102(R) (4 pp). → p 68.Google Scholar
Corral, Á., 2004a, Calculation of the transition matrix and of the occupation probabilities for the states of the Oslo sandpile model, Phys. Rev.E 69(2), 026107 (12 pp), arXiv: cond-mat/0310181v1. → pp 17, 93, 187, 200–203.Google ScholarPubMed
Corral, Á., 2004b, Long-term clustering, scaling, and universality in the temporal occurrence in earthquakes, Phys. Rev. Lett. 92(10), 108501 (4 pp). → p 68.CrossRefGoogle ScholarPubMed
Corral, Á., 2004c, Universal local versus unified global scaling laws in the statistics of seismicity, PhysicaA 340(4), 590–597. → p 68.Google Scholar
Corral, Á., and K., Christensen, 2006, Comment on ‘earthquakes descaled: on waiting time distributions and scaling laws’, Phys. Rev. Lett. 96(10), 109801 (1 p), comment on (Lindman et al., 2005), reply (Lindman et al., 2006). → pp 68, 431.CrossRefGoogle ScholarPubMed
Corral, Á., and A., Díaz-Guilera, 1997, Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality, Phys. Rev.E 55(3), 2434–2445, arXiv:cond-mat/9612100. → pp 101, 109, 203, 266, 267.Google Scholar
Corral, Á., and M., Paczuski, 1999, Avalanche merging and continuous flow in a sandpile model, Phys. Rev. Lett. 83(3), 572–575. → pp 193, 194, 300, 302, 322.CrossRefGoogle Scholar
Corral, Á., C. J., Pérez, A., Díaz-Guilera, and A., Arenas, 1995, Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators, Phys. Rev. Lett. 74(1), 118–121. → p 70.CrossRefGoogle Scholar
Corral, Á., L., Telesca, and R., Lasaponara, 2008, Scaling and correlations in the dynamics of forest-fire occurrence, Phys. Rev.E 77(1), 016101 (7 pp). → p 73.Google ScholarPubMed
Corté, L., P. M., Chaikin, J. P., Gollub, and D. J., Pine, 2008, Random organization in periodically driven systems, Nat. Phys. 4(5), 420–424. → p 58.CrossRefGoogle Scholar
Corté, L., S. J., Gerbode, W., Man, and D. J., Pine, 2009, Self-organized criticality in sheared suspensions, Phys. Rev. Lett. 103(24), 248301 (4 pp). → pp 58, 61.CrossRefGoogle ScholarPubMed
Costello, R. M., K. L., Cruz, C., Egnatuk, D. T., Jacobs, M. C., Krivos, T. S., Louis, R. J., Urban, and H., Wagner, 2003, Self-organized criticality in a bead pile, Phys. Rev.E 67(4), 041304 (9 pp). → pp 56, 134.Google Scholar
Cote, P. J., and L. V., Meisel, 1991, Self-organized criticality and the Barkhausen effect, Phys. Rev. Lett. 67(10), 1334–1337. → p 62.CrossRefGoogle ScholarPubMed
Cote, P. J., and L. V., Meisel, 1993, Self-organized criticality and the Barkhausen effect in amorphous and polycrystallinemetals, Int. J. Mod. Phys.B 7(1–3), 934–937, Proceedings of the International Conference on the Physics of TransitionMetals, Darmstadt, Germany, July 20–24, 1992. → p 63.CrossRefGoogle Scholar
Creed, M., 2004, Work 370: Balls (image of the work), multiple parts; overall dimensions variable. Installation view at Hauser & Wirth, London. Courtesy of the artist and Hauser & Wirth. Photo: Hugo Glendinning. → p xvi.Google Scholar
Creutz, M., 1991, Abelian sandpiles, Comput. Phys. 5(2), 198–203. → p 283.CrossRefGoogle Scholar
Creutz, M., 2004, Playing with sandpiles, PhysicaA 340(4), 521 – 526, Proceedings of the symposium Complexity and Criticality: in Memory of Per Bak (1947–2002), Copenhagen, Denmark, August 21–23, 2003. → pp 97, 283.Google Scholar
Crisanti, A., M. H., Jensen, A., Vulpiani, and G., Paladin, 1992, Strongly intermittent chaos and scaling in an earthquake model, Phys. Rev.A 46(12), R7363–R7366. → p 141.CrossRefGoogle Scholar
Cross, M. C., and P. C., Hohenberg, 1993, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65(3), 851. → p 318.CrossRefGoogle Scholar
Crovella, M. E., and A., Bestavros, 1997, Self-similarity in World Wide Web traffic: evidence and possible causes, IEEE Trans. Network. 5(6), 835–846. → p 76.CrossRefGoogle Scholar
Crutchfield, J., M., Nauenberg, and J., Rudnick, 1981, Scaling for external noise at the onset of chaos, Phys. Rev. Lett. 46(14), 933–935. → p 319.CrossRefGoogle Scholar
Cule, D., and T., Hwa, 1996, Tribology of sliding elastic media, Phys. Rev. Lett. 77(2), 278–281. → pp 178, 206, 302.CrossRefGoogle ScholarPubMed
da Silva, L., A. R. R., Papa, and A. M. C., de Souza, 1998, Criticality in a simple model for brain functioning, Phys. Lett.A 242(6), 343–348. →pp 70, 149.CrossRefGoogle Scholar
Daerden, F., and C., Vanderzande, 1996, 1/f noise in the Bak-Sneppen model, Phys. Rev.E 53(5), 4723–4728, comment (Davidsen and Lüthje, 2001). → pp 152, 154, 252.Google ScholarPubMed
Daerden, F., and C., Vanderzande, 1998, Sandpiles on a Sierpinski gasket, PhysicaA 256(3–4), 533–546. → pp 24, 101.Google Scholar
Dahlstedt, K., and H. J., Jensen, 2001, Universal fluctuations and extreme-value statistics, J. Phys. A: Math. Gen. 34(50), 11193–11200. → p 149.CrossRefGoogle Scholar
Dahmen, K., S., Kartha, J. A., Krumhansl, B. W., Roberts, J. P., Sethna, and J. D., Shore, 1994, Disorder-driven first-order phase transformations: a model for hysteresis, J. Appl. Phys. 75(10), 5946–5948, Proceedings of the 38th Annual Conference On Magnetism and Magnetic Materials, Minneapolis, MN, USA, November 15–18, 1993. → p 63.CrossRefGoogle Scholar
Dahmen, K., and J. P., Sethna, 1993, Hysteresis loop critical exponents in 6-ε dimensions, Phys. Rev. Lett. 71(19), 3222–3225. → p 63.CrossRefGoogle ScholarPubMed
Dahmen, K., and J. P., Sethna, 1996, Hysteresis, avalanches, and disorder-induced critical scaling: a renormalization-group approach, Phys. Rev.B 53(22), 14872–14905. → p 63.CrossRefGoogle ScholarPubMed
Dall'Asta, L., 2006, Exact solution of the one-dimensional deterministic fixed-energy sandpile, Phys. Rev. Lett. 96(5), 058003 (4 pp). → p 333.Google ScholarPubMed
Dantas, W. G., and J. F., Stilck, 2006, Generalized Manna sandpile model with height restrictions, Braz. J. Phys. 36(3A). → pp 333, 340.CrossRefGoogle Scholar
Das Sarma, S., S.V., Ghaisas, and J. M., Kim, 1994, Kinetic super-roughening and anomalous dynamic scaling in nonequilibrium growth models, Phys. Rev.E 49(1), 122–125. → pp 313, 314.Google ScholarPubMed
Datta, A. S., K., Christensen, and H. J., Jensen, 2000, On the physical relevance of extremal dynamics, Europhys. Lett. 50(2), 162–168. → pp 150, 161.CrossRefGoogle Scholar
Davidsen, J., and C., Goltz, 2004, Are seismic waiting time distributions universal?, Geophys. Res. Lett. 31(21), L21612 (4 pp). → p 68.CrossRefGoogle Scholar
Davidsen, J., and N., Lüthje, 2001, Comment on ‘1/f noise in the Bak-Sneppen model’, Phys. Rev.E 63(6), 063101 (2 pp), arXiv:cond-mat/0201201. → pp 15, 154, 412.Google ScholarPubMed
Davidsen, J., and M., Paczuski, 2005, Analysis of the spatial distribution between successive earthquakes, Phys. Rev. Lett. 94(4), 048501 (4 pp), comment(Werner and Sornette, 2007). → pp 68, 456.CrossRefGoogle ScholarPubMed
Davidsen, J., and M., Paczuski, 2007, Davidsen and Paczuski reply:, Phys. Rev. Lett. 99(17), 179802, reply to comment (Werner and Sornette, 2007). → pp 68, 456.CrossRefGoogle Scholar
de Arcangelis, L., C., Perrone-Capano, and H. J., Herrmann, 2006, Self-organized criticality model for brain plasticity, Phys. Rev. Lett. 96(2), 028107 (4 pp). → pp 70, 71.Google ScholarPubMed
de Boer, J., B., Derrida, H., Flyvbjerg, A. D., Jackson, and T., Wettig, 1994, Simple model of self-organized biological evolution, Phys. Rev. Lett. 73(6), 906–909. → pp 143, 152, 158, 251.CrossRefGoogle ScholarPubMed
de Boer, J., A. D., Jackson, and T., Wettig, 1995, Criticality in simple models of evolution, Phys. Rev.E 51(2), 1059–1074. → pp 152, 153, 251.Google ScholarPubMed
de Carvalho, J. X., and C. P. C., Prado, 2000, Self-organized criticality in the Olami-Feder-Christensen model, Phys. Rev. Lett. 84(17), 4006–4009, comment (Christensen et al., 2001). → pp 131, 410.CrossRefGoogle ScholarPubMed
de Carvalho, J. X., and C. P. C., Prado, 2001, de Carvalho and Prado reply:, Phys. Rev. Lett. 87(3), 039802 (1 p), reply to comment (Christensen et al., 2001). → p 410.CrossRefGoogle Scholar
de Gennes, P. G., 1966, Superconductivity of Metals and Alloys (Physica B, Reading, MA, USA), translated by P. A., Pincus. → p 58.Google Scholar
De Los Rios, P., M., Marsili, and M., Vendruscolo, 1998, High-dimensional Bak-Sneppen Model, Phys. Rev. Lett. 80(26), 5746–5749. → pp 143, 150, 152, 161.CrossRefGoogle Scholar
De Los Rios, P., and Y.-C., Zhang, 1999, Universal 1/f noise from dissipative self-organized criticality models, Phys. Rev. Lett. 82(3), 472–475. → p 15.CrossRefGoogle Scholar
De Menech, M., and A. L., Stella, 2000, From waves to avalanches: two different mechanisms of sandpile dynamics, Phys. Rev.E 62(4), R4528–R4531. → pp 92, 100, 170.Google ScholarPubMed
De Menech, M., A. L., Stella, and C., Tebaldi, 1998, Rare events and breakdown of simple scaling in the Abelian sandpile model, Phys. Rev.E 58(3), R2677–R2680. → pp 37, 51, 92, 102, 103, 220, 229.Google Scholar
de Oliveira, M.M., and R., Dickman, 2005, How to simulate the quasistationary state, Phys. Rev.E 71(1), 016129 (5 pp). → p 336.Google Scholar
de Sousa Vieira, M., 1992, Self-organized criticality in a deterministic mechanical model, Phys. Rev.A 46(10), 6288–6293. → pp 126, 178, 485.CrossRefGoogle Scholar
de Sousa Vieira, M., 2000, Simple deterministic self-organized critical system, Phys. Rev.E 61(6), R6056–R6059. → pp 126, 178, 302.Google ScholarPubMed
de Sousa Vieira, M., 2002, Breakdown of self-organized criticality in sandpiles, Phys. Rev.E 66(5), 051306 (5 pp). → p 192.Google ScholarPubMed
Dendy, R. O., and P., Helander, 1998, Appearance and nonappearance of self-organized criticality in sandpiles, Phys. Rev.E 57(3), 3641–3644. → pp 55, 193.Google Scholar
Dendy, R. O., P., Helander, and M., Tagger, 1998, On the role of self-organised criticality in accretion systems, Astron. Astrophys. 337(3), 962–965, updated in Dendy et al. (1999). → p 414.Google Scholar
Dendy, R. O., P., Helander, and M., Tagger, 1999, Self-organised criticality in astrophysical accretion systems, Phys. Scripta T82, 133–136, Topical Issue, Nonlinear Plasma Science: Special Issue in Honour of Professor Lennart Stenflo on the Occasion of his 60th Birthday, essentially identical to Dendy, Helander, and Tagger (1998). → pp 4, 72, 193, 414.CrossRefGoogle Scholar
Derrida, B., and M. R., Evans, 1997, The asymmetric exclusionmodel: exact results through a matrix approach, in Nonequilibrium Statistical Mechanics in One Dimension, edited by V., Privman (Cambridge University Press, Cambridge, UK), pp. 277–304. → p 202.Google Scholar
Derrida, B., M. R., Evans, V., Hakim, and V., Pasquier, 1993, Exact solution of a 1D asymmetric exclusionmodel using a matrix formulation, J. Phys. A: Math. Gen. 26(7), 1493–1517. → p 176.CrossRefGoogle Scholar
Dhar, D., 1990a, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64(14), 1613–1616, see erratum (Dhar, 1990b). → pp 82, 85–87, 90, 91, 94, 95, 96, 103, 129, 187, 198, 243, 246, 248, 249, 269, 275, 279, 285, 354, 485.Google ScholarPubMed
Dhar, D., 1990b, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64(23), 2837, erratum regarding numbering of references. → p 414.Google ScholarPubMed
▶●Dhar, D., 1999a, The Abelian sandpile and related models, PhysicaA 263(1–4), 4–25, arXiv:cond-mat/9808047. → pp 6, 82, 91, 95, 99–102, 163, 164, 167, 169, 183, 199, 250, 269, 277, 285, 485.Google Scholar
Dhar, D., 1999b, Some results and a conjecture for Manna's stochastic sandpile model, PhysicaA 270(1–2), 69–81, arXiv:cond-mat/9902137. → pp 167, 169, 181, 277, 279, 286.Google Scholar
▶●Dhar, D., 1999c, Studying self-organized criticality with exactly solved models, arXiv: cond-mat/9909009 (unpublished). → pp 6, 94–97, 101, 135, 201, 276, 277, 285, 414.
Dhar, D., 2004, Steady state and relaxation spectrum of the Oslo rice-pile model, PhysicaA 340(4), 535–543, arXiv:cond-mat/0309490. → pp 95, 163, 186–188, 198–200, 201, 275, 277, 296, 301.Google Scholar
Dhar, D., 2006, Theoretical studies of self-organized criticality, PhysicaA 369(1), 29–70, Proceedings of the 11th International Summerschool on Fundamental Problems in Statistical Physics, Leuven, Belgium, September 4–17, 2005; updated from Dhar (1999c). → pp 6, 101, 193, 197, 285.Google Scholar
Dhar, D., and S. N., Majumdar, 1990, Abelian sandpile model on the Bethe lattice, J. Phys. A: Math. Gen. 23(19), 4333–4350. → pp 100, 101, 243, 251, 320, 343.CrossRefGoogle Scholar
Dhar, D., and S. S., Manna, 1994, Inverse avalanches in the Abelian sandpile model, Phys. Rev.E 49(4), 2684–2697. → p 99.Google ScholarPubMed
Dhar, D., and P., Pradhan, 2004, Probability distribution of residence times of grains in sand-pile models, J. Stat. Mech. 2004(05), P05002 (12 pp), includes erratum. → p 196.Google Scholar
Dhar, D., and R., Ramaswamy, 1989, Exactly solved model of self-organized critical phenomena, Phys. Rev. Lett. 63(16), 1659–1662. → pp 22, 24, 101, 206, 249, 268, 285, 286, 288–290, 485.CrossRefGoogle ScholarPubMed
Dhar, D., P., Ruelle, S., Sen, and D.-N., Verma, 1995, Algebraic aspects of Abelian sandpile models, J. Phys. A: Math. Gen. 28(4), 805–831. → pp 87, 95, 96.CrossRefGoogle Scholar
Dhar, D., and P. B., Thomas, 1992, Hysteresis and self-organized criticality in the O(N) model in the limit N → ∞, J. Phys. A: Math. Gen. 25(19), 4967–4984. → p 343.CrossRefGoogle Scholar
Diamond, P. H., and T. S., Hahm, 1995, On the dynamics of turbulent transport near marginal stability, Phys. Plasmas 2(10), 3640–3649. → p 72.CrossRefGoogle Scholar
Díaz-Guilera, A., 1992, Noise and dynamics of self-organized critical phenomena, Phys. Rev.A 45(2), 8551–8558. → pp 104, 106, 108, 109, 243, 266, 267, 299, 322.CrossRefGoogle ScholarPubMed
Díaz-Guilera, A., 1994, Dynamic renormalization group approach to self-organized critical phenomena, Europhys. Lett. 26(3), 177–182, arXiv:cond-mat/9403036v1. → pp 101, 106, 109, 110, 203, 266, 299, 420.CrossRefGoogle Scholar
Dickman, R., 1994, Numerical study of a field theory for directed percolation, Phys. Rev.E 50(6), 4404–4409. → p 182.Google ScholarPubMed
Dickman, R., 2002a, n-site approximations and coherent-anomaly-method analysis for a stochastic sandpile, Phys. Rev.E 66(3), 036122 (6 pp). → p 181.Google ScholarPubMed
Dickman, R., 2002b, Nonequilibrium phase transitions in epidemics and sandpiles, PhysicaA 306, 90–97, arXiv:cond-mat/0110043. → pp 171, 177, 293.Google Scholar
Dickman, R., 2004a, Fractal rain distributions and chaotic advection, Braz. J. Phys. 34(2A), 337–346, arXiv:physics/0311083. → p 71.CrossRefGoogle Scholar
Dickman, R., 2004b, personal communication. → p 390.
Dickman, R., 2006, Critical exponents for the restricted sandpile, Phys. Rev.E 73(3), 036131 (5 pp). → pp 44, 168, 170, 177–180, 285, 294, 316.Google ScholarPubMed
Dickman, R., M., Alava, M. A., Muñoz, J., Peltola, A., Vespignani, and S., Zapperi, 2001, Critical behavior of a one-dimensional fixed-energy stochastic sandpile, Phys. Rev.E 64(5), 056104 (7 pp). → pp 168, 177, 179, 299, 313, 315, 331, 333, 337, 339, 340.Google ScholarPubMed
Dickman, R., and J. M. M., Campelo, 2003, Avalanche exponents and corrections to scaling for a stochastic sandpile, Phys. Rev.E 67(6), 066111 (5 pp). → pp 32, 165, 168, 169, 171, 180, 339.Google ScholarPubMed
Dickman, R., and J. Kamphorst Leal da, Silva, 1998, Moment ratios for absorbing-state phase transitions, Phys. Rev.E 58(4), 4266–4270. → p 39.Google Scholar
▶●Dickman, R., M. A., Muñoz, A., Vespignani, and S., Zapperi, 2000, Paths to self-organized criticality, Braz. J. Phys. 30(1), 27–41, arXiv:cond-mat/9910454v2. → pp 6, 10, 53, 56, 63, 64, 111, 170–172, 265, 266, 306, 321, 328, 330, 331, 334, 335, 485.CrossRefGoogle Scholar
Dickman, R., L., Rolla, and V., Sidoravicius, 2010, Activated random walkers: facts, conjectures and challenges, J. Stat. Phys. 138(1), 126–142. → p 330.CrossRefGoogle Scholar
Dickman, R., T., Tomé, and M. J., de Oliveira, 2002, Sandpiles with height restrictions, Phys. Rev.E 66(1), 016111 (8 pp). → pp 40, 168, 170, 171, 177, 178, 180, 181, 182, 283, 285, 292, 293.Google Scholar
▶⇒Dickman, R., A., Vespignani, and S., Zapperi, 1998, Self-organized criticality as an absorbing state phase transition, Phys. Rev.E 57(5), 5095–5105. → pp 10, 165, 170–172, 299, 300, 306, 307, 330–333, 339–341, 396.Google Scholar
Dickman, R., and R., Vidigal, 2002, Path-integral representation for a stochastic sandpile, J. Phys.A 35(34), 7269–7285. → p 182.Google Scholar
Dimri, V. P., and M. R., Prakash, 2001a, Reply to comments by Dr. James W. Kirchner on ‘scaling of power spectrum of extinction events in the fossil record’, Earth Planet. Sci. Lett. 192(4), 623 – 625, reply to Kirchner (2001). → pp 69, 428.CrossRefGoogle Scholar
Dimri, V. P., and M. R., Prakash, 2001b, Scaling of power spectrum of extinction events in the fossil record, Earth Planet. Sci. Lett. 186(3–4), 363 – 370, comment (Kirchner, 2001). → pp 69, 428.CrossRefGoogle Scholar
Ding, E. J., Y. N., Lu, and H. F., Ouyang, 1992, Theoretical sandpile with stochastic slide, Phys. Rev.A 46(10), R6136–R6139. → pp 56, 184.CrossRefGoogle ScholarPubMed
Diodati, P., F., Marchesoni, and S., Piazza, 1991, Acoustic emission from volcanic rocks: an example of self-organized criticality, Phys. Rev. Lett. 67(17), 2239–2243. → p 64.CrossRefGoogle Scholar
Doi, M., 1976, Second quantization representation for classical many-particle system, J. Phys. A: Math. Gen. 9(9), 1465–1477. → p 266.CrossRefGoogle Scholar
Domany, E., and W., Kinzel, 1984, Equivalence of cellular automata to Ising models and directed percolation, Phys. Rev. Lett. 53(4), 311–314. → p 298.CrossRefGoogle Scholar
Dorn, P. L., D. S., Hughes, and K., Christensen, 2001, On the avalanche size distribution in the BTW model, preprint from http://www.cmth.ph.ic.ac.uk/kim/papers/preprints/preprint_btw.pdf, accessed 19 October 2010 (unpublished). → p 103.
Dornic, I., H., Chaté, and M. A., Muñoz, 2005, Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions, Phys. Rev. Lett. 94(10), 100601 (4 pp). → pp 177, 182.CrossRefGoogle ScholarPubMed
Dougherty, D., 1992, sed & awk (O'Reilly, Sebastopol, CA, USA). → p 358.Google Scholar
Dowd, K., and C., Severance, 1998, High Performance Computing (O'Reilly, Sebastopol, CA, USA), 2nd edition. → pp 358, 361, 369, 380.Google Scholar
Drossel, B., 1997, Renormalization group approach to the critical behavior of the forest-fire model, Phys. Rev. Lett. 78(7), 1392. → p 119.CrossRefGoogle Scholar
Drossel, B., 1999a, An alternative view of the Abelian sandpile model, arXiv:cond-mat/9904075v1 (unpublished). → p 104.
Drossel, B., 1999b, On the scaling behavior of the Abelian sandpile model, arXiv: cond-mat/9904075v2 (unpublished). → p 104.
Drossel, B., 2000, Scaling behavior of the Abelian sandpile model, Phys. Rev.E 61(3), R2168–R2171, arXiv:cond-mat/9904075v2. → pp 55, 103, 104, 137, 169, 321.Google Scholar
Drossel, B., 2002, Complex scaling behavior of nonconserved self-organized critical systems, Phys. Rev. Lett. 89(23), 238701 (4 pp), arXiv:cond-mat/0205658. → pp 134, 137, 140, 358, 376.CrossRefGoogle ScholarPubMed
Drossel, B., S., Clar, and F., Schwabl, 1993, Exact results for the one-dimensional self-organized critical forest-fire model, Phys. Rev. Lett. 71(23), 3739–3742. → pp 116, 120, 121, 124.CrossRefGoogle ScholarPubMed
Drossel, B., and F., Schwabl, 1992a, Self-organized critical forest-fire model, Phys. Rev. Lett. 69(11), 1629–1632, largely identical to Proceedings article (Drossel and Schwabl, 1992b). → pp 82, 112, 115, 116, 117, 118–121, 124, 321, 391, 417, 485.CrossRefGoogle ScholarPubMed
Drossel, B., and F., Schwabl, 1992b, Self-organized criticality in a forest-firemodel, PhysicaA 191(1–4), 47–50, Proceedings of the International Conference on Fractals and Disordered Systems, Hamburg, Germany, July 29–31, 1992, largely identical to Drossel and Schwabl (1992a). → pp 115, 417.Google Scholar
Duarte, J. A. M. S., 1990, cited by Manna (1990) as private communication for studying the BTW model on a triangular lattice. → p 23.
Durin, G., G., Bertotti, and A., Magni, 1995, Fractals, scaling and the question of self-organized criticality in magnetization processes, Fractals 3(2), 351–370. → p 64.CrossRefGoogle Scholar
Durin, G., and S., Zapperi, 2000, Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets, Phys. Rev. Lett. 84(20), 4705–4708. → p 64.CrossRefGoogle ScholarPubMed
Dutta, P., and P. M., Horn, 1981, Low-frequency fluctuations in solids: 1/f noise, Rev. Mod. Phys. 53(3), 497–516. → p 4.CrossRefGoogle Scholar
Edwards, S. F., and D. R., Wilkinson, 1982, The surface statistics of a granular aggregate, Proc. R. Soc. London, Ser.A 381(1780), 17–31. → p 320.CrossRefGoogle Scholar
Efetov, K. B., and A. I., Larkin, 1977, Charge-density wave in a random potential, Sov. Phys. JETP 45, 1236, original Zh. Eksp. Teor. Fiz. 72, 2350–2361 (1971), translated by J. G., Adashko. → p 315.Google Scholar
Efron, B., 1982, The Jackknife, the Bootstrap and Other Resampling Plans (SIAM, Philadelphia, PA, USA). → p 216.CrossRefGoogle Scholar
Eldredge, N., and S. J., Gould, 1972, Punctuated equilibria: an alternative to phyletic gradualism, in Models in Paleobiology, edited by T. J. M., Schopf (Freeman, Cooper & Company, San Francisco, CA, USA), pp. 82–115. → pp 68, 141.Google Scholar
Eliazar, I., 2008, Intrinsic fractality of classic shot noise, Phys. Rev.E 77(6), 061103 (5 pp). → p 301.Google ScholarPubMed
Erzan, A., L., Pietronero, and A., Vespignani, 1995, The fixed-scale transformation approach to fractal growth, Rev. Mod. Phys. 67(3), 545–604. → p 267.CrossRefGoogle Scholar
Evernden, J. F., 1970, Study of regional seismicity and associated problems, Bull. Seismol. Soc. Am. 60(2), 393–446. → p 66.Google Scholar
Evesque, P., 1991, Analysis of the statistics of sandpile avalanches using soil-mechanics results and concepts, Phys. Rev.A 43(6), 2720–2740. → p 56.CrossRefGoogle ScholarPubMed
Evesque, P., and J., Rajchenbach, 1989, Instability in a sand heap, Phys. Rev. Lett. 62(1), 44–46. → pp 53, 54.CrossRefGoogle Scholar
Faillettaz, J., F., Louchet, and J.-R., Grasso, 2004, Two-threshold model for scaling laws of noninteracting snow avalanches, Phys. Rev. Lett. 93(20), 208001 (4 pp). → p 57.CrossRefGoogle ScholarPubMed
Family, F., and T., Vicsek, 1985, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, J. Phys. A: Math. Gen. 18(2), L75–L81. → p 313.CrossRefGoogle Scholar
Feder, H. J. S., and J., Feder, 1991a, Self-organized criticality in a stick-slip process, Phys. Rev. Lett. 66(20), 2669–2672, see erratum (Feder and Feder, 1991b). → pp 65, 81, 126, 129, 321, 485.CrossRefGoogle Scholar
Feder, H. J. S., and J., Feder, 1991b, Self-organized criticality in a stick-slip process, Phys. Rev. Lett. 67(2), 283, erratum. → pp 126, 418.CrossRefGoogle Scholar
Feder, J., 1988, Fractals (Plenum Press, London, UK). → p 17.CrossRefGoogle Scholar
Feder, J., 1995, The evidence for self-organized criticality in sandpiles dynamics, Fractals 3(3), 431–443. → pp 55, 57.CrossRefGoogle Scholar
Feller, W., 1966, An Introduction to Probability Theory and its Applications, volume II (John Wiley & Sons, New York, NY, USA). → pp 37, 261.Google Scholar
Feller, W., 1968, An Introduction to Probability Theory and its Applications, volume I (John Wiley & Sons, New York, NY, USA), 3rd edition. → p 261.Google Scholar
Fenger, N. P., 1976, Dimensional analysis of swirl atomizers, Engineering 216(12), 896–899. → p 22.Google Scholar
Ferreira, A. L. C., and S. K., Mendiratta, 1993, Mean-field approximation with coherent anomaly method for a non-equilibrium model, J. Phys. A: Math. Gen. 26(4), L145–L150. → pp 181, 250, 394.CrossRefGoogle Scholar
Ferrenberg, A. M., D. P., Landau, and K., Binder, 1991, Statistical and systematic errors in Monte Carlo sampling, J. Stat. Phys. 63(5/6), 867–882. → p 225.CrossRefGoogle Scholar
Ferrenberg, A. M., and R. H., Swendsen, 1988, New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett. 61(23), 2635–2638. → p 358.CrossRefGoogle ScholarPubMed
Fey, A., L., Levine, and Y., Peres, 2010a, Growth rates and explosions in sandpiles, J. Stat. Phys. 138(1), 143–159, arXiv:0901.3805v2. → p 101.CrossRefGoogle Scholar
Fey, A., L., Levine, and D. B., Wilson, 2010b, Approach to criticality in sandpiles, Phys. Rev.E 82(3), 031121 (14 pp), arXiv:1001.3401v1. → pp 101, 338, 342.Google ScholarPubMed
Fey, A., L., Levine, and D. B., Wilson, 2010c, Driving sandpiles to criticality and beyond, Phys. Rev. Lett. 104(14), 145703 (4 pp), arXiv:0912.3206v3. → pp 101, 338, 342, 426.CrossRefGoogle ScholarPubMed
Fey, A., R., Meester, and F., Redig, 2009, Stabilizability and percolation in the infinite volume sandpile model, Ann. Probab. 37(2), 654–675, arXiv:0710.0939v2. → p 101.CrossRefGoogle Scholar
Fey-den Boer, A., and F., Redig, 2005, Organized versus self-organized criticality in the Abelian sandpile model, Markov Process. Relat. Fields 11(3), 425–442, arXiv: math-ph/0510060. → p 101.Google Scholar
Fey-den Boer, A., and F., Redig, 2008, Limiting shapes for deterministic centrally seeded growth models, J. Stat. Phys. 130(3), 579–597. → p 110.CrossRefGoogle Scholar
Feynman, R. P., R. B., Leighton, and M., Sands, 1964, The Feynman Lectures on Physics, volume 2 (Addison-Wesley, Reading, MA, USA). → p 62.Google Scholar
Field, S., J., Witt, F., Nori, and X., Ling, 1995, Superconducting vortex avalanches, Phys. Rev. Lett. 74(7), 1206–1209. → pp 59, 60.CrossRefGoogle ScholarPubMed
Fisher, D. S., 1998, Collective transport in random media: from superconductors to earthquakes, Phys. Rep. 301(1–3), 113 – 150. → pp 58, 62, 299.CrossRefGoogle Scholar
Fisher, M. E., 1984, Walks, walls, wetting, and melting, J. Stat. Phys. 34(5/6), 667–729. → pp 243, 249, 286, 291, 318.CrossRefGoogle Scholar
Fisher, M. E., 1986, Interface wandering in adsorbed and bulk phases, pure and impure, J. Chem. Soc., Faraday Trans.2 82, 1596–1603 (Faraday Symposium 20). → pp 301, 314.Google Scholar
Fisher, M. E., and M. F., Sykes, 1959, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114(1), 45–58. → p 23.CrossRefGoogle Scholar
Flyvbjerg, H., and H. G., Petersen, 1989, Error estimates on averages of correlated data, J. Chem. Phys. 91(1), 461–466. → p 217.CrossRefGoogle Scholar
Flyvbjerg, H., K., Sneppen, and P., Bak, 1993, Mean field theory of a simple model of evolution, Phys. Rev. Lett. 71(24), 4087–4090. → pp 152, 251.CrossRefGoogle ScholarPubMed
Forster, D., D. R., Nelson, and M. J., Stephen, 1977, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev.A 16(2), 732–749. → pp 267, 324, 325.CrossRefGoogle Scholar
Fraysse, N., A., Sornette, and D., Sornette, 1993, Critical phase transitions made selforganized: proposed experiments, J. Phys. I (France) 3, 1377–1386. → p 330.CrossRefGoogle Scholar
Freckleton, R. P., and W. J., Sutherland, 2001, Hospital waiting-lists (communication arising): do power laws imply self-regulation?, Nature 413(6854), 382–382. → p 76.CrossRefGoogle Scholar
Frette, V., 1993, Sandpile models with dynamically varying critical slopes, Phys. Rev. Lett. 70(18), 2762–2765. → pp 58, 87, 184, 185, 190, 205, 206, 299, 301, 302, 318, 327.CrossRefGoogle ScholarPubMed
Frette, V., 2009, personal communication. → p 185.
Frette, V., K., Christensen, A., Malthe-Sørenssen, J., Feder, T., Jøssang, and P., Meakin, 1996, Avalanche dynamics in a pile of rice, Nature 379, 49–52. → pp 55, 57, 184–186, 190, 191, 192, 193, 195, 203, 301.CrossRefGoogle Scholar
Frette, V., J., Feder, T., Jøssang, and P., Meakin, 1993, ‘Stick-slip’ motion during slow fluid migration in porous media, personal comunication from Vidar Frette, March 2009 (unpublished). → p 185.
Frigg, R., 2003, Self-organised criticality – what it is and what it isn't, Stud. Hist. Philos. Sci. 34, 613–632. → p 6.CrossRefGoogle Scholar
Frisch, U., 1995, Turbulence (Cambridge University Press, Cambridge, UK). → pp 112, 320.Google Scholar
Gabaix, X., P., Gopikrishnan, V., Plerou, and H. E., Stanley, 2003, A theory of power-law distributions in financial market fluctuations, Nature 423(6937), 267–270. → p 75.CrossRefGoogle ScholarPubMed
Gabrielli, A., R., Cafiero, M., Marsili, and L., Pietronero, 1997, Theory of self-organized criticality for problems with extremal dynamics, Europhys. Lett. 38(7), 491–496, arXiv: cond-mat/9702176. → p 345.CrossRefGoogle Scholar
Gabrielli, A., M., Marsili, R., Cafiero, and L., Pietronero, 1996, Comment on the run time statistics in models of growth in disordered media, J. Stat. Phys. 84(3/4), 889–893, erratum of Marsili (1994b). → pp 150, 152, 434.CrossRefGoogle Scholar
Galambos, J., 1978, The Asymptotic Theory of Extreme Order Statistics (John Wiley & Sons, New York, NY, UK). → p 344.Google Scholar
Galassi, M., J., Davies, J., Theiler, B., Gough, G., Jungman, P., Alken, M., Booth, and F., Rossi, 2009, GNU Scientific Library Reference Manual (Network Theory Ltd.), 3rd (v1.12) edition, http://www.network-theory.co.uk/gsl/manual/, accessed 18 August 2009. → p 371.Google Scholar
Garcia, G. J. M., and R., Dickman, 2004, On the thresholds, probability densities, and critical exponents of Bak-Sneppen-like model, PhysicaA 342(1–2), 164–170. → p 151.Google Scholar
García-Pelayo, R., 1994a, Dimension of branching processes and self-organized criticality, Phys. Rev.E 49(6), 4903–4906, erratum (García-Pelayo, 1994b). → p 131.Google ScholarPubMed
García-Pelayo, R., 1994b, Erratum: dimension of branching processes and self-organized criticality, Phys. Rev.E 50(6), 5146. → p 420.Google ScholarPubMed
Garcimartín, A., A., Guarino, L., Bellon, and S., Ciliberto, 1997, Statistical properties of fracture precursors, Phys. Rev. Lett. 79(17), 3202–3205. → p 64.CrossRefGoogle Scholar
Gardiner, C. W., 1997, Handbook of Stochastic Methods (Springer-Verlag, Berlin, Germany), 2nd edition. → p 15.Google Scholar
Garrido, P. L., J. L., Lebowitz, C., Maes, and H., Spohn, 1990, Long-range correlations for conservative dynamics, Phys. Rev.A 42(4), 1954–1968. → pp 266, 293, 298, 321, 326.CrossRefGoogle ScholarPubMed
Gattass, R., and R., Desimone, 1996, Responses of cells in the superior colliculus during performance of a spatial attention task in the macaque, Rev. Bras. Biol. 56(Su 1 Pt 2), 257–279. → p 70.Google ScholarPubMed
Gaunt, D. S., M. E., Fisher, M. F., Sykes, and J. W., Essam, 1964, Critical isotherm of a ferromagnet and of a fluid, Phys. Rev. Lett. 13(24), 713–715. → p 23.CrossRefGoogle Scholar
Gaveau, B., and L. S., Schulman, 1991, Mean-field self-organized criticality, J. Phys. A: Math. Gen. 24(9), L475–L480. → pp 250, 251.CrossRefGoogle Scholar
Gawlinski, E. T., and S., Redner, 1983, Monte-Carlo renormalisation group for continuum percolation with excluded-volume interactions, J. Phys. A: Math. Gen. 16(5), 1063–1071. → p 113.CrossRefGoogle Scholar
Gentle, J. E., 1998, Random Number Generation and Monte Carlo Methods (Springer-Verlag, Berlin, Germany). → p 371.CrossRefGoogle Scholar
Geoffroy, O., and J. L., Porteseil, 1991a, On the fractal nature of Barkhausen noise in magnetically soft materials, J. Magn. Magn. Mater. 97(1–3), 205 – 209. → p 62.Google Scholar
Geoffroy, O., and J. L., Porteseil, 1991b, Sandpile simulation of Barkhausen noise in soft magnetic materials, J. Magn. Magn. Mater. 97(1–3), 198 – 204. → p 62.Google Scholar
Geoffroy, O., and J. L., Porteseil, 1994, Scaling properties of irreversible magnetization and their consequences on the macroscopic behaviour of soft materials, J. Magn. Magn. Mater. 133(1–3), 1 – 5. → p 62.CrossRefGoogle Scholar
Ghaffari, P., and H. J., Jensen, 1996, Comment on dynamical renormalization group approach to self-organized critical phenomena, Europhys. Lett. 35(5), 397–398, comment on Díaz-Guilera (1994). → pp 106, 110.CrossRefGoogle Scholar
Ghaffari, P., S., Lise, and H. J., Jensen, 1997, Nonconservative sandpile models, Phys. Rev.E 56(6), 6702–6709. → pp 88, 109, 334.Google Scholar
Ghashghaie, S., W., Breymann, J., Peinke, P., Talkner, and Y., Dodge, 1996, Turbulent cascades in foreign exchange markets, Nature 381(6585), 767–770. → p 75.CrossRefGoogle Scholar
Giacometti, A., and A., Díaz-Guilera, 1998, Dynamical properties of the Zhang model of self-organized criticality, Phys. Rev.E 58(1), 247–253. → pp 104–106, 109.Google Scholar
Gilden, D. L., T., Thornton, and M.W., Mallon, 1995, 1/f noise in human cognition, Science 267(5205), 1837–1839. → p 76.CrossRefGoogle ScholarPubMed
Gillet, F., 2003, Asymptotic behaviour of watermelons, arXiv:math/0307204v1 (unpublished). → p 249.
Gisiger, T., 2001, Scale invariance in biology: coincidence or footprint of a universal mechanism?, Biol. Rev. 76, 161–209. → pp 3, 4, 53, 68, 70, 71, 158, 159, 319.CrossRefGoogle ScholarPubMed
Gleiser, P. M., 2001, Damage spreading in a rice pile model, PhysicaA 295(1–2), 311–315. → pp 192, 270.Google Scholar
Gleiser, P. M., S. A., Cannas, F. A., Tamarit, and B., Zheng, 2001, Long-range effects in granular avalanching, Phys. Rev.E 63(4), 042301 (4 pp). → p 192.Google ScholarPubMed
Godrèche, C. (editor), 1992, Solids Far From Equilibrium (Cambridge University Press, Cambridge, UK). → p 301.
Goldberg, D., 1991, What every computer scientist should know about floating-point arithmetic, ACM Comput. Surv. 23(1), 5–48. → p 379.CrossRefGoogle Scholar
Gopal, A. D., and D. J., Durian, 1995, Nonlinear bubble dynamics in a slowly driven foam, Phys. Rev. Lett. 75(13), 2610–2613. → p 62.CrossRefGoogle Scholar
Gopikrishnan, P., V., Plerou, L. A. N., Amaral, M., Meyer, and H. E., Stanley, 1999, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev.E 60(5), 5305–5316. → p 75.Google ScholarPubMed
Gould, S. J., 2002, The Structure Of Evolutionary Theory (Belknap Press of Harvard University Press, Cambridge, MA, USA). → p 141.Google Scholar
Gould, S. J., and N., Eldredge, 1993, Punctuated equilibrium comes of age, Nature 366, 223–227. → pp 68, 141.CrossRefGoogle ScholarPubMed
Grassberger, P., 1982, On phase transitions in Schlöogels second model, Z. Phys.B 47, 365–374. → pp 155, 177, 293.CrossRefGoogle Scholar
Grassberger, P., 1986, Toward a quantitative theory of self-generated complexity, Int. J. Theor. Phys. 25(9), 907–938. → pp 16, 17.CrossRefGoogle Scholar
Grassberger, P., 1992, Spreading and backbone dimensions of 2D percolation, J. Phys. A: Math. Gen. 25(21), 5475–5484. → p 117.CrossRefGoogle Scholar
Grassberger, P., 1993, On a self-organized forest-fire model, J. Phys. A: Math. Gen. 26(9), 2081–2089. → pp 116, 117, 118–121, 123–125.CrossRefGoogle Scholar
Grassberger, P., 1994, Efficient large-scale simulations of a uniformly driven system, Phys. Rev.E 49(3), 2436–2444. → pp 127, 128, 133–136, 140, 141, 358, 361, 362, 365, 376, 384.Google ScholarPubMed
Grassberger, P., 1995, The Bak-Sneppen model for punctuated evolution, Phys. Lett.A 200(3–4), 277–282. → pp 143, 151, 154–158, 160, 161.CrossRefGoogle Scholar
Grassberger, P., 2002, Critical behaviour of the Drossel-Schwabl forest fire model, New J. Phys. 4(1), 17 (15 pp), arXiv:cond-mat/0202022. → pp 116, 119–122, 124, 125, 282.CrossRefGoogle Scholar
Grassberger, P., and H., Kantz, 1991, On a forest-fire model with supposed self-organized criticality, J. Stat. Phys. 63(3–4), 685–700. → pp 113, 114, 116, 391.CrossRefGoogle Scholar
Grassberger, P., and S. S., Manna, 1990, Some more sandpiles, J. Phys. France 51, 1077–1098. → pp 91, 92, 99, 101, 104, 156, 163, 233, 243, 295, 301, 320.CrossRefGoogle Scholar
Grassberger, P., and Y.-C., Zhang, 1996, ‘Self-organized’ formulation of standard percolation phenomena, PhysicaA 224(1–2), 169–179. → pp 294, 296, 321, 330.Google Scholar
Graves, J. P., R. O., Dendy, K. I., Hopcraft, and E., Jakeman, 2002, The role of clustering effects in interpreting nondiffusive transport measurements in tokamaks, Phys. Plasmas 9(5), 1595–1605. → pp 72, 193.CrossRefGoogle Scholar
Gribov, V. N., 1967, Reggeon diagram technique, Zh. Eksp. Teor. Fiz. 53, 654–672 (Sov. Phys. JETP 26, 414–422 (1968)). → pp 142, 264.Google Scholar
Grinstein, G., 1991, Generic scale invariance in classical nonequilibrium systems (invited), J. Appl. Phys. 69(8), 5441–5446, Proceedings of the 35th Annual Conference on Magnetism and Magnetic Materials, San Diego, CA, USA October 29. Nov 1, 1990. → pp 266, 293, 298, 325.CrossRefGoogle Scholar
Grinstein, G., 1995, Generic scale invariance and self-organized criticality, in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, edited by A., McKane, M., Droz, J., Vannimenus, and D., Wolf (Plenum Press, New York, NY, USA), pp. 261–293, NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → pp 6, 15, 56, 172, 301, 318, 320, 321, 322, 323, 325, 329, 331, 344, 351, 352.Google Scholar
Grinstein, G., T., Hwa, and H. J., Jensen, 1992, 1/fα noise in dissipative transport, Phys. Rev.A 45(2), R559–R562. → p 323.CrossRefGoogle Scholar
Grinstein, G., and D.-H., Lee, 1991, Generic scale invariance and roughening in noisy model sandpiles and other driven interfaces, Phys. Rev. Lett. 66(2), 177–180. → p 305.CrossRefGoogle ScholarPubMed
Grinstein, G., D.-H., Lee, and S., Sachdev, 1990, Conservation laws, anisotropy, and ‘Self-organized criticality’ in noisy nonequilibrium systems, Phys. Rev. Lett. 64(16), 19271930. → pp 266, 293, 298, 305, 318, 321–325, 327.CrossRefGoogle Scholar
Grumbacher, S. K., K. M., McEwen, D. A., Halverson, D. T., Jacobs, and J., Lindner, 1993, Self-organized criticality: an experiment with sandpiles, Am. J. Phys. 61(4), 329–335. → p 56.CrossRefGoogle Scholar
Guarino, A., A., Garcimartín, and S., Ciliberto, 1998, An experimental test of the critical behaviour of fracture precursors, Eur. Phys. J.B 6(1), 13–24. → p 64.CrossRefGoogle Scholar
Guclu, H., G., Korniss, and Z., Toroczkai, 2007, Extreme fluctuations in noisy task-completion landscapes on scale-free networks, Chaos 17, 026104 (13 pp), arXiv: cond-mat/0701301v1. → p 149.CrossRefGoogle ScholarPubMed
Gumbel, E. J., 1958, Statistics of Extremes (Columbia University Press, New York, NY, USA). → pp 132, 149, 344.Google Scholar
Gutenberg, B., and C. F., Richter, 1954, Seismicity of the Earth and Associated Phenomena (Princeton University Press, Princeton, NJ, USA), 2nd edition. → p 66.Google Scholar
Halley, J. M., 1996, Ecology, evolution and 1/f -noise, Trends Ecol. Evol. 11(1), 33 – 37. → pp 69, 74.CrossRefGoogle Scholar
Halpin-Healy, T., and Y.-C., Zhang, 1995, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics, Phys. Rep. 254(4–6), 215–414. → p 301.CrossRefGoogle Scholar
Hansen, A., and S., Roux, 1987, Application of ‘logical transport’ to determine the directed and isotropic percolation thresholds, J. Phys. A: Math. Gen. 20(13), L873–L878. → pp 294, 296, 321.CrossRefGoogle Scholar
Hardner, H. T., M. B., Weissman, M. B., Salamon, and S. S. P., Parkin, 1993, Fluctuation-dissipation relation for giant magnetoresistive 1/f noise, Phys. Rev.B 48(21), 16156–16159. → p 63.CrossRefGoogle ScholarPubMed
Harris, T. E., 1963, The Theory of Branching Processes (Springer-Verlag, Berlin, Germany). → pp 154, 251, 257, 258, 261.CrossRefGoogle Scholar
Harris, T. E., 1974, Contact interactions on a lattice, Ann. Prob. 2(6), 969–988. → p 341.CrossRefGoogle Scholar
Hastings, A., C. L., Holm, S., Ellner, P., Turchin, and H. C. J., Godfray, 1993, Chaos in ecology: is mother nature a strange attractor?, Annu. Rev. Ecol. Syst. 24, 1–33. → p 319.CrossRefGoogle Scholar
Hasty, J., and K., Wiesenfeld, 1997, Renormalization of one-dimensional avalanche models, J. Stat. Phys. 86(5/6), 1179–1201. → pp 182, 268.CrossRefGoogle Scholar
Hasty, J., and K., Wiesenfeld, 1998a, Renormalization group for directed sandpile models, Phys. Rev. Lett. 81(8), 1722–1725. → pp 268, 286.CrossRefGoogle Scholar
Hasty, J., and K., Wiesenfeld, 1998b, Renormalization of self-organized critical models, Ann. NY Acad. Sci. 848, 9–17. → p 182.Google Scholar
Haussmann, R., 1999, Liquid 4He near the superfluid transition in the presence of a heat current and gravity, Phys. Rev.B 60(17), 12349–12372. → p 61.CrossRefGoogle Scholar
Head, D. A., and G. J., Rodgers, 1997, Crossover to self-organized criticality in an inertial sandpile model, Phys. Rev.E 55(3), 2573–2579. → pp 192, 203.Google Scholar
Head, D. A., and G. J., Rodgers, 1998, The anisotropic Bak-Sneppen model, J. Phys. A: Math. Gen. 31(17), 3977–3988. → p 157.CrossRefGoogle Scholar
Head, D. A., and G. J., Rodgers, 1999, Stretched exponentials and power laws in granular avalanching, J. Phys. A: Math. Gen. 32(8), 1387–1393. → pp 192, 193.CrossRefGoogle Scholar
Heiden, C., and G. I., Rochlin, 1968, Flux jump size distribution in low-k type-II superconductors, Phys. Rev. Lett. 21(10), 691–694. → p 59.CrossRefGoogle Scholar
Held, G. A., D. H., Solina, H., Solina, D. T., Keane, W. J., Haag, P. M., Horn, and G., Grinstein, 1990, Experimental study of critical-mass fluctuations in an evolving sandpile, Phys. Rev. Lett. 65(9), 1120–1123. → pp 54–56, 102, 192.CrossRefGoogle Scholar
Helmstetter, A., Y. Y., Kagan, and D. D., Jackson, 2006, Comparison of short-term and time-independent earthquake forecast models for southern California, Bull. Seismol. Soc. Am. 96(1), 90–106. → p 67.CrossRefGoogle Scholar
Henkel, M., H., Hinrichsen, and S., Lübeck, 2008, Non-Equilibrium Phase Transitions (Springer-Verlag, Berlin, Germany). → pp 20, 300, 325, 330.Google Scholar
Henley, C. L., 1989, M18.2: Self-organized percolation: a simpler model, Bull. Am. Phys. Soc. 34(3), 838, abstract of talk M18.2, 23 March 1989, of the 1989 March Meeting of The American Physical Society, St. Louis, MO, USA, March 20.24, 1989. → pp 112, 115, 116, 121.Google Scholar
Henley, C. L., 1993, Statics of a ‘self-organized’ percolation model, Phys. Rev. Lett. 71(17), 2741–2744. → pp 117, 120, 123.CrossRefGoogle ScholarPubMed
Hergarten, S., 2002, Self-Organized Criticality in Earth Systems (Springer-Verlag, Berlin, Germany). → pp 6, 66, 139, 366.CrossRefGoogle Scholar
Hergarten, S., 2003, Landslides, sandpiles, and self-organized criticality, Nat. Hazards Earth Syst. Sci. 3, 505–514. → p 139.CrossRefGoogle Scholar
Hergarten, S., and H. J., Neugebauer, 2002, Foreshocks and aftershocks in the Olami-Feder-Christensen model, Phys. Rev. Lett. 88(23), 238501 (4 pp). → p 67.CrossRefGoogle ScholarPubMed
Herrmann, H. J., and S., Luding, 1998, Modeling granular media on the computer, Continuum Mech. Thermodyn. 10, 189–231. → p 56.CrossRefGoogle Scholar
Herz, A. V. M., and J. J., Hopfield, 1995, Earthquake cycles and neural reverberations: collective oscillations in systems with pulse-coupled threshold elements, Phys. Rev. Lett. 75(6), 1222–1225. → p 70.CrossRefGoogle ScholarPubMed
Hethcote, H.W., 2000, The mathematics of infectious diseases, SIAM Rev. 42(4), 599–653. → p 115.CrossRefGoogle Scholar
Hinrichsen, H., 2000, Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys. 49, 815–958, arXiv:cond-mat/0001070v2. → pp 155, 157, 176, 202, 290, 293, 302, 306, 330, 333, 336.CrossRefGoogle Scholar
Hohenberg, P. C., and B. I., Halperin, 1977, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435–479. → pp 19, 177, 267, 282, 300, 316, 318, 323, 352.CrossRefGoogle Scholar
Honecker, A., and I., Peschel, 1997, Length scales and power laws in the two-dimensional forest-fire model, PhysicaA 239(4), 509–530. → pp 116, 119, 120, 123.Google Scholar
Hooge, F. N., and P. A., Bobbert, 1997, On the correlation function of 1/f noise, PhysicaB 239(3–4), 223 – 230. → p 16.Google Scholar
Hooge, F. N., T. G. M., Kleinpenning, and L. K. J., Vandamme, 1981, Experimental studies on 1/f noise, Rep. Progr. Phys. 44(5), 479–532. → p 4.CrossRefGoogle Scholar
Hopcraft, K. I., E., Jakeman, and R. M. J., Tanner, 1999, Lévy random walks with fluctuating step number and multiscale behavior, Phys. Rev.E 60(5), 5327–5343. → p 195.Google ScholarPubMed
Hopcraft, K. I., E., Jakeman, and R. M. J., Tanner, 2001a, Characterization of structural reorganization in rice piles, Phys. Rev.E 64(1), 016116 (10 pp). → p 195.Google ScholarPubMed
Hopcraft, K. I., R. M. J., Tanner, E., Jakeman, and J. P., Graves, 2001b, Fractional non-Brownian motion and trapping-time distributions of grains in rice piles, Phys. Rev.E 64(2), 026121 (6 pp). → p 195.Google ScholarPubMed
Hopfield, J. J., 1994, Neurons, dynamics and computation, Phys. Today 47(2), 40–46, special issue, Physics and Biology. → pp 69, 70.CrossRefGoogle Scholar
Horgan, J., 1995, From complexity to perplexity, Sci. Am. 272(6), 74–79. → p 6.CrossRefGoogle Scholar
Hoshen, J., 1997, Percolation and cluster structure parameters: the radius of gyration, J. Phys. A: Math. Gen. 30(24), 8459–8469. → p 124.CrossRefGoogle Scholar
Hoshen, J., M. W., Berry, and K. S., Minser, 1976, Percolation and cluster structure parameters: The enhanced Hoshen-Kopelman algorithm, Phys. Rev.E 56(2), 1455–1460. → p 124.Google Scholar
Hoshen, J., and R., Kopelman, 1976, Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev.B 14(8), 3438–3445. → p 124.CrossRefGoogle Scholar
Houle, P. A., and J. P., Sethna, 1996, Acoustic emission from crumpling paper, Phys. Rev.E 54(1), 278–283. → p 65.Google ScholarPubMed
Hu, C.-K., and C.-Y., Lin, 2003, Universality in critical exponents for toppling waves of the BTW sandpile model on two-dimensional lattices, PhysicaA 318(1–2), 92–100. → pp 23, 99.Google Scholar
Huberman, B. A., and L. A., Adamic, 1999, Internet: growth dynamics of the World Wide Web, Nature 401(6749), 131. → p 76.CrossRefGoogle Scholar
Huberman, B. A., P. L. T., Pirolli, J. E., Pitkow, and R. M., Lukose, 1998, Strong regularities in World Wide Web surfing, Science 280(5360), 95–97. → p 76.CrossRefGoogle ScholarPubMed
Hughes, D., and M., Paczuski, 2002, Large scale structures, symmetry, and universality in sandpiles, Phys. Rev. Lett. 88(5), 054302 (4 pp). → pp 22, 23, 107, 206, 269, 283, 284, 286, 288, 292.CrossRefGoogle ScholarPubMed
Hughes, D., M., Paczuski, R. O., Dendy, P., Helander, and K. G., McClements, 2003, Solar flares as cascades of reconnecting magnetic loops, Phys. Rev. Lett. 90(13), 131101 (4 pp), arXiv:cond-mat/0210201. → p 72.CrossRefGoogle ScholarPubMed
Huynh, H. N., L. Y., Chew, and G., Pruessner, 2010, The Abelian Manna model on two fractal lattices, arXiv:1006.5807 (unpublished). → p 24.
Hwa, T., and M., Kardar, 1989a, Dissipative transport in open systems: an investigation of self-organized criticality, Phys. Rev. Lett. 62(16), 1813–1816, identical to proceedings article (Hwa and Kardar, 1989b). → pp 88, 111, 129, 130, 205, 243, 266, 267, 293, 298–300, 304, 317, 321–329, 334, 342, 343, 352, 425.CrossRefGoogle ScholarPubMed
Hwa, T., and M., Kardar, 1989b, Fractals and self-organized criticality in dissipative dynamics, PhysicaD 38(1–3), 198–202, identical to Hwa and Kardar (1989a); Proceedings of a Conference Held in Honour of Benoit B. Mandelbrot's 65th Birthday, Les Mas d'Artigny (Vence), France, October 1 – 4, 1989. → p 425.Google Scholar
Hwa, T., and M., Kardar, 1992, Avalanches, hydrodynamics, and discharge events in models of sandpiles, Phys. Rev.A 45(10), 7002–7023. → pp 193, 194, 322, 343.CrossRefGoogle ScholarPubMed
Ito, K., 1995, Punctuated-equilibrium model of biological evolution is also a self-organized-criticality model of earthquakes, Phys. Rev.E 52(3), 3232–3233. → p 68.Google ScholarPubMed
Ito, K., and M., Matsuzaki, 1990, Earthquakes as self-organized critical phenomena, J. Geophys. Res. 95(B5), 6853–6860. → p 66.CrossRefGoogle Scholar
Ivashkevich, E. V., 1994, Boundary height correlations in the two-dimensional Abelian sandpile, J. Phys. A: Math. Gen. 27(11), 3643–3653. → p 99.CrossRefGoogle Scholar
Ivashkevich, E. V., 1996, Critical behavior of the sandpile model as a self-organized branching process, Phys. Rev. Lett. 76(18), 3368–3371. → pp 257, 268.CrossRefGoogle ScholarPubMed
Ivashkevich, E. V., D. V., Ktitarev, and V. B., Priezzhev, 1994a, Critical exponents for boundary avalanches in a two-dimensional Abelian sandpile, J. Phys. A: Math. Gen. 27(16), L585–L590. → pp 100, 178, 248.CrossRefGoogle Scholar
Ivashkevich, E. V., D. V., Ktitarev, and V. B., Priezzhev, 1994b, Waves of topplings in an Abelian sandpile, PhysicaA 209(3–4), 347–360. → pp 99, 100, 170, 292.Google Scholar
Ivashkevich, E. V., A. M., Povolotsky, A., Vespignani, and S., Zapperi, 1999, Dynamical real space renormalization group applied to sandpile models, Phys. Rev.E 60(2), 1239–1251. → p 268.Google ScholarPubMed
Ivashkevich, E. V., and V. B., Priezzhev, 1998, Introduction to the sandpile model, PhysicaA 254(1–2), 97–116. → p 99.Google Scholar
Jaeger, H. M., C.-h., Liu, and S. R., Nagel, 1989, Relaxation at the angle of repose, Phys. Rev. Lett. 62(1), 40–43. → pp 52, 53, 54, 55, 57, 102.CrossRefGoogle ScholarPubMed
Jaeger, H. M., and S. R., Nagel, 1992, Physics of the granular state, Science 255(5051), 1523–1531. → p 56.CrossRefGoogle ScholarPubMed
Jaeger, H. M., S. R., Nagel, and R. P., Behringer, 1996, Granular solids, liquids, and gases, Rev. Mod. Phys. 68(4), 1259–1273. → pp 53, 197.CrossRefGoogle Scholar
Jánosi, I. M., 1990, Effect of anisotropy on the self-organized critical state, Phys. Rev.A 42(2), 769–774. → pp 105, 106, 108.CrossRefGoogle ScholarPubMed
Jánosi, I. M., and V. K., Horváth, 1989, Dynamics of water droplets on a window pane, Phys. Rev.A 40(9), 5232–5237. → pp 57, 102.CrossRefGoogle ScholarPubMed
Jánosi, I. M., and J., Kertész, 1993, Self-organized criticality with and without conservation, PhysicaA 200(1–4), 179–188. → pp 128, 129, 134, 135, 138, 140, 236.Google Scholar
Janowsky, S. A., and C. A., Laberge, 1993, Exact solutions for a mean-field Abelian sandpile, J. Phys. A: Math. Gen. 26(19), L973–L980. → pp 100, 251.CrossRefGoogle Scholar
Janssen, H. K., 1981, On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state, Z. Phys.B 42, 151–154. → pp 155, 177, 264, 293.CrossRefGoogle Scholar
Janssen, H.-K., 2005, Survival and percolation probabilities in the field theory of growth models, J. Phys.: Condens. Matter 17(20), S1973–S1993. → p 179.Google Scholar
Janssen, H. K., and B., Schmittmann, 1986, Field theory of long time behaviour in driven diffusive systems, Z. Phys.B 63(4), 517–520. → p 266.CrossRefGoogle Scholar
Jeng, M., 2005a, Conformal field theory correlations in the Abelian sandpile model, Phys. Rev.E 71(1), 016140 (12 pp). → p 99.Google ScholarPubMed
Jeng, M., 2005b, Four height variables, boundary correlations, and dissipative defects in the Abelian sandpile model, Phys. Rev.E 71(3), 036153 (17 pp). → p 99.Google ScholarPubMed
Jeng, M., G., Piroux, and P., Ruelle, 2006, Height variables in the Abelian sandpile model: scaling fields and correlations, J. Stat. Mech. 2006(10), P10015-1–63, arXiv: cond-mat/0609284. → pp 99, 100.Google Scholar
Jensen, H. J., 1990, Lattice gas as a model of 1/f noise, Phys. Rev. Lett. 64(26), 3103–3106. → pp 15, 81, 178, 185, 485.CrossRefGoogle ScholarPubMed
Jensen, H. J., 1998, Self-Organized Criticality (Cambridge University Press, New York, NY, USA). → pp xii, 6, 7, 11, 16, 56, 204, 268, 346.CrossRefGoogle Scholar
Jensen, H. J., K., Christensen, and H. C., Fogedby, 1989, 1/f noise, distribution of lifetimes, and a pile of sand, Phys. Rev.B 40(10), 7425–7427. → pp 12, 15, 16, 42, 54, 55, 62, 102.CrossRefGoogle Scholar
Jensen, I., 1992, Critical behavior of the three-dimensional contact process, Phys. Rev.A 45(2), R563–R566. → p 294.CrossRefGoogle ScholarPubMed
Jensen, I., 1999, Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice, J. Phys. A: Math. Gen. 32(28), 5233–5249. → p 294.Google Scholar
Jettestuen, E., and A., Malthe-Sørenssen, 2005, Scaling properties of a one-dimensional sandpile model with grain dissipation, Phys. Rev.E 72(6), 062302 (4 pp). → pp 184, 207, 289, 291, 327, 334.Google ScholarPubMed
Ji, H., and M. O., Robbins, 1992, Percolative, self-affine, and faceted domain growth in random three-dimensional magnets, Phys. Rev.B 46(22), 14519–14527. → p 63.CrossRefGoogle ScholarPubMed
Jinghua, F., M., Ta-chung, R., Rittel, and K., Tabelow, 2001, Criticality in quark-gluon systems far beyond thermal and chemical equilibrium, Phys. Rev. Lett. 86(10), 1961–1964. → p 72.CrossRefGoogle ScholarPubMed
Jo, H.-H., and M., Ha, 2008, Relevance of Abelian symmetry and stochasticity in directed sandpiles, Phys. Rev. Lett. 101(21), 218001 (4 pp). → pp 269, 284, 286, 287.CrossRefGoogle ScholarPubMed
Jo, H.-H., and H.-C., Jeong, 2010, Comment on ‘Driving Sandpiles to Criticality and Beyond’, Phys. Rev. Lett. 105(1), 019601 (1 p), comment on (Fey et al., 2010c), no reply. → pp 101, 342.CrossRefGoogle ScholarPubMed
Johansen, A., P., Dimon, C., Ellegaard, J. S., Larsen, and H. H., Rugh, 1993, Dynamic phases in a spring-block system, Phys. Rev.E 48(6), 4779–4790. → p 65.Google Scholar
Jovanović, B., S. V., Buldyrev, S., Havlin, and H. E., Stanley, 1994, Punctuated equilibrium and ‘history-dependent’ percolation, Phys. Rev.E 50(4), R2403–R2406. → pp 143, 151, 155–157, 485.Google ScholarPubMed
Juanico, D. E., C., Monterola, and C., Saloma, 2007a, Dissipative self-organized branching in a dynamic population, Phys. Rev.E 75(4), 045105(R) (4 pp), see Juanico et al. (2007b). → pp 334, 335, 427.Google Scholar
Juanico, D. E., C., Monterola, and C., Saloma, 2007b, Self-organized critical branching in systems that violate conservation laws, New J. Phys. 9(4), 92 (18 pp), see Juanico et al. (2007a). → pp 265, 328, 334, 335, 427.CrossRefGoogle Scholar
Kadanoff, L. P., 1966, Scaling laws for Ising models near T*c, Physics 2(6), 263–272. → pp 4, 25, 266.Google Scholar
Kadanoff, L. P., 1986, Fractals: where's the physics?, Phys. Today 39(2), 6–7. → pp 4, 16, 319, 347.CrossRefGoogle Scholar
Kadanoff, L. P., 1990, Scaling and universality in statistical physics, PhysicaA 163(1), 1 – 14. → pp 25, 51, 320.Google Scholar
Kadanoff, L. P., 2000, Statistical Physics (World Scientific, Singapore). → p 6.CrossRefGoogle Scholar
Kadanoff, L. P., A. B., Chhabra, A. J., Kolan, M. J., Feigenbaum, and I., Procaccia, 1992, Critical indices for singular diffusion, Phys. Rev.A 45(8), 6095–6098. → p 343.CrossRefGoogle ScholarPubMed
Kadanoff, L. P., S. R., Nagel, L., Wu, and S.-m., Zhou, 1989, Scaling and universality in avalanches, Phys. Rev.A 39(12), 6524–6537. → pp 12, 18, 19, 22, 23, 25, 51, 54, 89, 93, 139, 203, 243, 284, 286, 292, 293, 327.CrossRefGoogle ScholarPubMed
Kagan, Y. Y., 1991a, Likelihood analysis of earthquake catalogues, Geophys. J. Int. 106(1), 135–148. → p 66.CrossRefGoogle Scholar
Kagan, Y. Y., 1991b, Seismic moment distribution, Geophys. J. Int. 106(1), 123–134. → p 66.CrossRefGoogle Scholar
Kagan, Y. Y., 2003, Accuracy of modern global earthquake catalogs, Phys. Earth Planet. Inter. 135(2–3), 173–209. → p 66.CrossRefGoogle Scholar
Kakalios, J., 2005, Resource letter GP-1: granular physics or nonlinear dynamics in a sandbox, Am. J. Phys. 73(1), 8–22. → pp 53, 85, 193.CrossRefGoogle Scholar
Kaneko, K., 1983, Transition from torus to chaos accompanied by frequency lockings with symmetry breaking – in connection with coupled-logistic map –, Progr. Theor. Phys. 69(5), 1427–1442. → p 126.CrossRefGoogle Scholar
Kaneko, K., 1984, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice – towards a prelude of a ‘field theory of chaos’ –, Progr. Theor. Phys. 72(3), 480–486. → p 126.CrossRefGoogle Scholar
Kaneko, K., 1989, Spatiotemporal chaos in one- and two-dimensional coupled map lattices, PhysicaD 37(1–3), 60–82. → pp 126, 127.Google Scholar
Kantz, H., and T., Schreiber, 2005, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, UK), 2nd edition. → p 358.Google Scholar
Kardar, M., 1996, Avalanche theory in rice, Nature 379, 22. → pp 19, 71, 192.Google Scholar
Kardar, M., 1998, Nonequilibrium dynamics of interfaces and lines, Phys. Rep. 301, 85–112. → p 301.Google Scholar
Kardar, M., G., Parisi, and Y.-C., Zhang, 1986, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56(9), 889–892. → pp 301, 320.CrossRefGoogle ScholarPubMed
Karmakar, R., S. S., Manna, and A. L., Stella, 2005, Precise toppling balance, quenched disorder, and universality for sandpiles, Phys. Rev. Lett. 94(8), 088002 (4 pp). → pp 23, 95, 100, 104, 165, 178, 181, 204, 287.CrossRefGoogle ScholarPubMed
Katori, M., and H., Kobayashi, 1996, Mean-field theory of avalanches in self-organized critical states, PhysicaA 229(3–4), 461–477. → p 251.Google Scholar
Kauffman, S. A., and S., Johnsen, 1991, Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches, J. Theor. Biol. 149(4), 467–505. → pp 158, 319.CrossRefGoogle ScholarPubMed
Kaulke, M., 1999, Anwendung der Dichtematrix-Renormierung auf nichthermitesche Probleme, Ph.D. Thesis, Fachbereich Physik, Freie UniversitätBerlin, Germany. → pp 176, 202.Google Scholar
Keitt, T. H., and P. A., Marquet, 1996, The introduced Hawaiian avifauna reconsidered: evidence for self-organized criticality?, J. Theor. Biol. 182(2), 161 – 167. → p 74.CrossRefGoogle Scholar
Kellog, D., 1975, The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria), Paleobiology 1(4), 359–370. → p 141.Google Scholar
Kernighan, B. W., and R., Pike, 2002, The Practice of Programming (Addison-Wesley, Boston, MA, USA). → p 359.Google Scholar
Kernighan, B. W., and D. M., Ritchie, 1988, The C Programming Language (Prentice Hall, Englewood Cliffs, NJ, USA), 2nd edition. → p 358.Google Scholar
Kertész, J., and L. B., Kiss, 1990, The noise spectrum in the model of self-organised criticality, J. Phys. A: Math. Gen. 23(9), L433–L440. → pp 16, 102.CrossRefGoogle Scholar
Kessler, D. A., H., Levine, and Y., Tu, 1991, Interface fluctuations in random media, Phys. Rev.A 43(8), 4551–4554. → p 302.CrossRefGoogle ScholarPubMed
Khfifi, M., and M., Loulidi, 2008, Scaling properties of a rice-pile model: inertia and friction effects, Phys. Rev.E 78(5), 051117 (8 pp). → pp 135, 192.Google ScholarPubMed
Kinouchi, O., S. T. R., Pinho, and C. P. C., Prado, 1998, Random-neighbor Olami-Feder-Christensen slip-stick model, Phys. Rev.E 58(3), 3997–4000. → pp 131, 328.Google Scholar
Kirchner, J. W., 2001, Fractal power spectra plotted upside-down: comment on ‘scaling of power spectrum of extinction events in the fossil record’ by V. P. Dimri and M. R. Prakash, Earth Planet. Sci. Lett. 192(4), 617 – 621, comment on (Dimri and Prakash, 2001b), reply (Dimri and Prakash, 2001a). → pp 69, 416.CrossRefGoogle Scholar
Kirchner, J. W., and A., Weil, 1998, No fractals in fossil extinction statistics, Nature 395(6700), 337–338. → pp 52, 69, 158.CrossRefGoogle Scholar
Klein, W., and J., Rundle, 1993, Comment on ‘self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes’, Phys. Rev. Lett. 71(8), 1288, comment on (Olami et al., 1992), reply (Christensen, 1993). → pp 128, 136, 410, 439.CrossRefGoogle Scholar
Kloster, M., S., Maslov, and C., Tang, 2001, Exact solution of a stochastic directed sandpile model, Phys. Rev.E 63(2), 026111 (4 pp). → pp 22, 24, 107, 172, 206, 208, 249, 264, 288, 291.Google ScholarPubMed
Knuth, D. E., 1997a, The Art of Computer Programming, Volumes 1–3 (Addison-Wesley, Reading, MA, USA). → p 358.Google Scholar
Knuth, D. E., 1997b, Fundamental Algorithms, volume 1 of The Art of Computer Programming (Addison-Wesley, Reading, MA, USA), 3rd edition. → p 253.Google Scholar
Knuth, D. E., 1997c, Seminumerical Algorithms, volume 2 of The Art of Computer Programming (Addison-Wesley, Reading, MA, USA), 2nd edition. → pp 371, 389.Google Scholar
Koba, Z., H. B., Nielsen, and P., Olesen, 1972, Scaling of multiplicity distributions in high energy hadron collisions, Nucl. Phys.B 40, 317–334. → p 221.CrossRefGoogle Scholar
Koch, C., 1997, Computation and the single neuron, Nature 385, 207–210. → p 69.Google ScholarPubMed
Kockelkoren, J., and H., Chaté, 2003, Absorbing phase transitions with coupling to a static field and a conservation law, arXiv:cond-mat/0306039v1 (unpublished). → pp 179, 300.
Kolmogorov, A. N., 1991, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Proc. R. Soc. London, Ser.A 434(1890), 9–13, original Dokl. Akad. Nauk SSSR 30, 299–303 (1941), translated by V., Levin. → p 320.CrossRefGoogle Scholar
Koplik, J., and H., Levine, 1985, Interface moving through a random background, Phys. Rev.B 32(1), 280–292. → pp 205, 299.CrossRefGoogle ScholarPubMed
Koscielny-Bunde, E., A., Bunde, S., Havlin, H. E., Roman, Y., Goldreich, and H.-J., Schellnhuber, 1998, Indication of a universal persistence law governing atmospheric variability, Phys. Rev. Lett. 81(3), 729–732. → p 71.CrossRefGoogle Scholar
Krim, J., and J. O., Indekeu, 1993, Roughness exponents: a paradox resolved, Phys. Rev.E 48(2), 1576–1578. → p 312.Google ScholarPubMed
Krug, J., 1995, Statistical physics of growth processes, in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, edited by A., McKane, M., Droz, J., Vannimenus, and D., Wolf (Plenum Press, New York, NY, USA), pp. 1–61, NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → pp 301, 320, 321, 396.Google Scholar
Krug, J., 1997, Origins of scale invariance in growth processes, Adv. Phys. 46(2), 139–282. → pp 251, 301, 313, 315.CrossRefGoogle Scholar
Krug, J., 2007, Records in a changing world, J. Stat. Mech. 2007(07), P07001 (13 pp). → p 149.Google Scholar
Krug, J., J. E. S., Socolar, and G., Grinstein, 1992, Surface fluctuations and criticality in a class of one-dimensional sandpile models, Phys. Rev.A 46(8), R4479–R4482. → pp 56, 192, 197, 314.CrossRefGoogle Scholar
Krug, J., and H., Spohn, 1991, Kinetic roughening of growing surfaces, in Solids far from Equilibrium, edited by C., Godrèche (Cambridge University Press, Cambridge, UK), pp. 479–582. → pp 301, 313, 314.Google Scholar
Ktitarev, D. V., S., Lübeck, P., Grassberger, and V. B., Priezzhev, 2000, Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model, Phys. Rev.E 61(1), 81–92. → p 100.Google ScholarPubMed
Kulkarni, R. V., E., Almaas, and D., Stroud, 1999, Evolutionary dynamics in the Bak-Sneppen model on small-world networks, arXiv:cond-mat/9905066 (unpublished). → p 159.
Kutnjak-Urbanc, B., S., Zapperi, S., Milošević, and H. E., Stanley, 1996, Sandpile model on the Sierpinski gasket fractal, Phys. Rev.E 54(1), 272–277. → pp 24, 101.Google ScholarPubMed
Laherrère, J., and D., Sornette, 1998, Stretched exponential distributions in nature and economy: ‘fat tails’ with characteristic scales, Eur. Phys. J.B 2(4), 525–539. → p 57.CrossRefGoogle Scholar
Landau, D. P., and K., Binder, 2005, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, UK), 2nd edition. → pp 39, 220, 227, 358.CrossRefGoogle Scholar
Langton, C. G., 1990, Computation at the edge of chaos: phase transitions and emergent computation, PhysicaD 42(1–3), 12 – 37. → pp 17, 319, 345.Google Scholar
Lässig, M., 1998, On growth, disorder, and field theory, J. Phys.: Condens. Matter 10(44), 9905–9950. → p 301.Google Scholar
Lauritsen, K. B., S., Zapperi, and H. E., Stanley, 1996, Self-organized branching processes: avalanche models with dissipation, Phys. Rev.E 54(3), 2483–2488. → pp 265, 328, 334, 335.Google Scholar
Le Bellac, M., 1991, Quantum and Statistical Field Theory (Phenomenes critiques aux champs de jauge) (Oxford University Press, New York, NY, USA), translated by G., Barton. → pp 266, 319, 325.Google Scholar
Le Doussal, P., K. J., Wiese, and P., Chauve, 2002, Two-loop functional renormalization group theory of the depinning transition, Phys. Rev.B 66(17), 174201 (34 pp), arXiv: cond-mat/0205108. → pp 179, 205, 267, 315.CrossRefGoogle Scholar
Leadbetter, M. R., G., Lindgren, and H., Rootzén, 1983, Extremes and Related Properties of Random Sequences and Processes (Springer-Verlag, New York, NY, USA). → p 344.CrossRefGoogle Scholar
Lee, B. P., and J., Cardy, 1995, Renormalization group study of the A + B ∅ diffusion-limited reaction, J. Stat. Phys. 80(5/6), 971–1007. → p 266.CrossRefGoogle Scholar
Leschhorn, H., 1993, Interface depinning in a disordered medium – numerical results, PhysicaA 195(3–4), 324–335, arXiv:cond-mat/9302039. → pp 207, 315.Google Scholar
Leschhorn, H., 1994, Grenzflächen in ungeordneten Medien, Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany. → pp 182, 205, 315.Google Scholar
Leschhorn, H., T., Nattermann, S., Stepanow, and L.-H., Tang, 1997, Driven interface depinning in a disordered medium, Ann. Phys. 6, 1–34, arXiv:cond-mat/9603114. → pp 182, 205, 267, 299, 315, 316, 329, 438.Google Scholar
Leschhorn, H., and L.-H., Tang, 1994, Avalanches and correlations in driven interface depinning, Phys. Rev.E 49(2), 1238–1245. → pp 182, 295.Google ScholarPubMed
Leung, K., J., Müller, and J. V., Andersen, 1997, Generalization of a two-dimensional Burridge-Knopoff model of earthquakes, J. Phys. I (France) 7, 423–429. → pp 125, 133.Google Scholar
Levina, A., J. M., Herrmann, and T., Geisel, 2006, Dynamical synapses give rise to a power-law distribution of neuronal avalanches, in Advances in Neural Information Processing Systems 18, edited by Y., Weiss, B., Schölkopf, and J., Platt (MIT Press, Cambridge, MA, USA), pp. 771–778. → p 71.Google Scholar
Levina, A., J. M., Herrmann, and T., Geisel, 2007, Dynamical synapses causing self-organized criticality in neural networks, Nat. Phys. 3(12), 857–860. → p 71.CrossRefGoogle Scholar
Liggett, T. M., 2000, Interacting Particle Systems, volume 276 of Grundlehren der mathematischen Wissenschaften (Springer-Verlag, Berlin, Germany). → pp 142, 264, 341.Google Scholar
Liggett, T. M., 2005, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Springer-Verlag, Berlin, Germany). → p 389.Google Scholar
Lin, C.-Y., C.-F., Chen, C.-N., Chen, C.-S., Yang, and I.-M., Jiang, 2006, Effects of bulk dissipation on the critical exponents of a sandpile, Phys. Rev.E 74(3), 031304 (11 pp). → pp 88, 94, 169, 306, 334.Google ScholarPubMed
Lin, C.-Y., A.-C., Cheng, and T.-M., Liaw, 2007, Numerical renormalization-group approach to a sandpile, Phys. Rev.E 76(4), 041114 (7 pp). → pp 268, 292.Google ScholarPubMed
Lin, C.-Y., and C.-K., Hu, 2002, Renormalization-group approach to an Abelian sandpile model on planar lattices, Phys.Rev.E 66(2), 021307 (12 pp). → pp 92, 101, 267, 268, 455.Google Scholar
Lindman, M., K., Jónsdóttir, R., Roberts, B., Lund, and R., Bödvarsso, 2005, Earthquakes descaled: on waiting time distributions and scaling laws, Phys. Rev. Lett. 94(10), 108501 (4 pp), comment (Corral and Christensen, 2006). → pp 68, 411.CrossRefGoogle ScholarPubMed
Lindman, M., K., Jónsdóttir, R., Roberts, B., Lund, and R., Bödvarsso, 2006, Lindman et al. Reply:, Phys. Rev. Lett. 96(10), 109802 (1 p), reply to comment (Corral and Christensen, 2006). → pp 68, 411.CrossRefGoogle Scholar
Ling, X. S., D., Shi, and J. L., Budnick, 1991, Self-organized critical state in High-Tc superconductors, PhysicaC 185–189(Part 4), 2181 – 2182. → p 59.Google Scholar
Linkenkaer-Hansen, K., V. V., Nikouline, and R. J., Ilmoniemi, 2000, Critical dynamics in the human brain, NeuroImage 11(5, Supplement 1), S760. → p 70.CrossRefGoogle Scholar
Linkenkaer-Hansen, K., V. V., Nikouline, J. M., Palva, and R. J., Ilmoniemi, 2001, Long-range temporal correlations and scaling behavior in human brain oscillations, J. Neurosci. 21(4), 1370–1377. → pp 52, 70.CrossRefGoogle ScholarPubMed
Lise, S., 2002, Self-organization to criticality in a system without conservation law, J. Phys. A: Math. Gen. 35(22), 4641–4649, arXiv:cond-mat/0204490. → pp 134, 135, 137, 172, 238.CrossRefGoogle Scholar
Lise, S., and H. J., Jensen, 1996, Transitions in nonconserving models of self-organized criticality, Phys. Rev. Lett. 76(13), 2326–2329. → pp 130, 131, 132, 328.CrossRefGoogle ScholarPubMed
Lise, S., and M., Paczuski, 2001a, Scaling in a nonconservative earthquake model of self-organized criticality, Phys. Rev.E 64(4), 046111 (5 pp). → pp 128, 134, 137, 141, 169.Google Scholar
Lise, S., and M., Paczuski, 2001b, Self-organized criticality and universality in a non-conservative earthquake model, Phys. Rev.E 63(3), 036111 (5 pp). → pp 128, 136, 141.Google Scholar
Loison, D., C. L., Qin, K. D., Schotte, and X. F., Jin, 2004, Canonical local algorithms for spin systems: heat bath and Hasting's methods, Eur. Phys. J.B 41, 395–412. → p 389.CrossRefGoogle Scholar
López, C., and M. A., Muñoz, 1997, Numerical analysis of a Langevin equation for systems with infinite absorbing states, Phys. Rev.E 56(4), 4864–4867. → p 182.Google Scholar
López, J. M., 1999, Scaling approach to calculate critical exponents in anomalous surface roughening, Phys. Rev. Lett. 83(22), 4594–4597. → p 313.CrossRefGoogle Scholar
Loreto, V., L., Pietronero, A., Vespignani, and S., Zapperi, 1995, Renormalization group approach to the critical behavior of the forest-fire model, Phys. Rev. Lett. 75(3), 465–468. → pp 119–121, 268.CrossRefGoogle ScholarPubMed
Loreto, V., L., Pietronero, A., Vespignani, and S., Zapperi, 1997, Loreto et al Reply:, Phys. Rev. Lett. 78(7), 1393, reply to comment (Torcini, Livi, Politi, and Ruffo, 1997). → pp 119, 453.CrossRefGoogle Scholar
Loreto, V., A., Vespignani, and S., Zapperi, 1996, Renormalization scheme for forest-fire models, J. Phys. A: Math. Gen. 29(21), 2981–3004. → p 121.CrossRefGoogle Scholar
Lőrincz, K. A., and R. J., Wijngaarden, 2007, Edge effect on the power law distribution of granular avalanches, Phys. Rev.E 76(4), 040301(R) (4 pp). → pp 58, 192.Google ScholarPubMed
Lőrincz, K. A., and R. J., Wijngaarden, 2008, Influence of the driving rate in a two-dimensional rice pile model, Phys. Rev.E 77(6), 066110 (4 pp). → pp 189, 194, 322.Google Scholar
Lowen, S. B., S. S., Cash, M.-m., Poo, and M. C., Teich, 1997, Quantal neurotransmitter secretion rate exhibits fractal behavior, J. Neurosci. 17(15), 5666–5677. → p 70.CrossRefGoogle ScholarPubMed
Lowen, S. B., and M. C., Teich, 1993, Fractal renewal processes generate 1/f noise, Phys. Rev.E 47(2), 992–1001. → p 15.Google ScholarPubMed
Lu, E. T., and R. J., Hamilton, 1991, Avalanches and the distribution of solar flares, Astrophys. J. 380(2), L89–L92. → p 72.CrossRefGoogle Scholar
Lübeck, S., 1997, Large-scale simulations of the Zhang model, Phys. Rev.E 56(2), 1590–1594. → pp 105, 106, 108, 109.Google Scholar
Lübeck, S., 1998, Logarithmic corrections of the avalanche distributions of sandpile models at the upper critical dimension, Phys. Rev.E 58(3), 2957–2964. → pp 104, 250.Google Scholar
Lübeck, S., 2000, Moment analysis of the probability distribution of different sandpile models, Phys. Rev.E 61(1), 204–209. → pp 42–44, 92, 101–104, 165, 168, 183, 292, 294, 306, 316.Google ScholarPubMed
Lübeck, S., 2002a, Scaling behavior of the conserved transfer threshold process, Phys. Rev.E 66(4), 046114 (6 pp). → pp 170, 337.Google ScholarPubMed
Lübeck, S., 2002b, Scaling behavior of the order parameter and its conjugated field in an absorbing phase transition around the upper critical dimension, Phys. Rev.E 65(4), 046150 (7 pp). → pp 179, 305, 306, 337.Google Scholar
Lübeck, S., 2003, Mean-field theory for self-organized critical sandpile models, personal communication (unpublished). → pp 251, 333.
Lübeck, S., 2004, Universal scaling behavior of non-equilibrium phase transitions, Int. J. Mod. Phys.B 18(31/32), 3977–4118. → pp x, 20, 44, 155, 168, 179, 261, 294, 305, 306, 316, 330, 339, 340.CrossRefGoogle Scholar
Lübeck, S., and P. C., Heger, 2003a, Universal finite-size scaling behavior and universal dynamical scaling behavior of absorbing phase transitions with a conserved field, Phys. Rev.E 68(5), 056102 (11 pp). → pp 44, 168–170, 178, 179, 183, 283, 294, 305–307, 316, 336–338, 340.Google ScholarPubMed
Lübeck, S., and P. C., Heger, 2003b, Universal scaling behavior at the upper critical dimension of nonequilibrium continuous phase transitions, Phys. Rev. Lett. 90(23), 230601 (4 pp). → pp x, 164, 167, 169, 179, 183, 337, 339, 340.Google ScholarPubMed
Lübeck, S., and H.-K., Janssen, 2005, Finite-size scaling of directed percolation above the upper critical dimension, Phys. Rev.E 72(1), 016119 (4 pp). → p 39.Google ScholarPubMed
Lübeck, S., N., Rajewsky, and D. E., Wolf, 2000, A deterministic sandpile automaton revisited, Eur. Phys. J.B 13(4), 715–721, 10.1007/s100510050090. → pp 97, 134.CrossRefGoogle Scholar
Lübeck, S., B., Tadić, and K. D., Usadel, 1996, Nonequilibrium phase transition and self-organized criticality in a sandpile model with stochastic dynamics, Phys. Rev.E 53(3), 2182–2189. → p 135.Google Scholar
Lübeck, S., and K. D., Usadel, 1993, SOC in a class of sandpile models with stochastic dynamics, Fractals 1(4), 1030–1036. → pp 135, 197, 284, 314.CrossRefGoogle Scholar
Lübeck, S., and K. D., Usadel, 1997a, Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension, Phys. Rev.E 56(5), 5138–5143. → pp 92, 101, 104.Google Scholar
Lübeck, S., and K. D., Usadel, 1997b, Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model, Phys. Rev.E 55(4), 4095–4099. → pp 92, 102, 103.Google Scholar
Luding, S., 1996, Langkorn- oder Kurzkornreis?, Phys. Bl. 52(3), 203. → p 192.Google Scholar
Luijten, E., and H. W. J., Blöte, 1995, Monte Carlo method for spin models with long-range interactions, Int. J. Mod. Phys.C 6(3), 359–370. → p 251.CrossRefGoogle Scholar
Lux, T., and M., Marchesi, 1999, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature 397(6719), 498–500. → p 75.CrossRefGoogle Scholar
Ma, S.-K., 1976, Modern Theory of critical Phenomena (Addison-Wesley, Reading, MA, USA). → pp 251, 267.Google Scholar
Machta, J., D., Candela, and R. B., Hallock, 1993, Self-organized criticality in 4He with a heat current, Phys. Rev.E 47(6), 4581. → p 344.Google ScholarPubMed
Maddox, J., 1994, Punctuated equilibrium by computer, Nature 371, 197. → pp 68, 158.CrossRefGoogle Scholar
Maddox, J., 1995, The case for great many journals, Nature 375, 11. → p 158.CrossRefGoogle ScholarPubMed
Maes, C., A. Van, Moffaert, H., Frederix, and H., Strauven, 1998, Criticality in creep experiments on cellular glass, Phys. Rev.B 57(9), 4987–4990. → p 64.CrossRefGoogle Scholar
Mahan, G. D., 1990, Many-Particle Physics (Plenum Press, New York, NY, USA), 2nd edition. → p 175.CrossRefGoogle Scholar
Mahieu, S., and P., Ruelle, 2001, Scaling fields in the two-dimensional Abelian sandpile model, Phys. Rev.E 64(6), 066130 (19 pp), arXiv:hep-th/0107150. → p 99.Google ScholarPubMed
Main, I. G., and P. W., Burton, 1986, Long-term earthquake recurrence constrained by tectonic seismic moment release rates, Bull. Seismol. Soc. Am. 76(1), 297–304. → p 66.Google Scholar
Maini, P. K., K. J., Paintera, and H. N. P., Chaub, 1997, Spatial pattern formation in chemical and biological systems, J. Chem. Soc., Faraday Trans. 93, 3601–3610. → p 114.CrossRefGoogle Scholar
Majumdar, S. N., and A., Comtet, 2004, Exact maximal height distribution of fluctuating interfaces, Phys. Rev. Lett. 92(22), 225501 (4 pp). → pp 149, 208, 232, 250.CrossRefGoogle ScholarPubMed
Majumdar, S. N., and A., Comtet, 2005, Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces, J. Stat. Phys. 119(3/4), 777–826. → pp 208, 232, 250.CrossRefGoogle Scholar
Majumdar, S. N., and D., Dhar, 1991, Height correlations in the Abelian sandpile model, J. Phys. A: Math. Gen. 24(7), L357–L362. → pp 98, 99, 246.CrossRefGoogle Scholar
Majumdar, S. N., and D., Dhar, 1992, Equivalence between the Abelian sandpile model and the q → 0 limit of the Potts model, PhysicaA 185(1–4), 129–145. → pp 95, 99, 100.Google Scholar
Malamud, B. D., J. D. A., Millington, and G. L. W., Perry, 2004, Characterizing wildfire regimes in the United States, Proc. Natl. Acad. Sci. USA 102(13), 4694–4699. → pp 73, 122.Google Scholar
Malamud, B. D., G., Morein, and D. L., Turcotte, 1998, Forest fires: an example of self-organized critical behavior, Science 281(5384), 1840–1842. → pp 73, 120, 122, 123.CrossRefGoogle ScholarPubMed
Malcai, O., D. A., Lidar, O., Biham, and D., Avnir, 1997, Scaling range and cutoffs in empirical fractals, Phys. Rev.E 56(3), 2817–2828. → p 53.Google Scholar
Malcai, O., Y., Shilo, and O., Biham, 2006, Dissipative sandpile models with universal exponents, Phys. Rev.E 73(5), 056125 (5 pp). → pp 169, 246, 306, 328, 334.Google ScholarPubMed
Malthe-Sørenssen, A., 1996, Kinetic grain model for sandpiles, Phys. Rev.E 54(3), 2261–2265. → p 178.Google ScholarPubMed
Malthe-Sørenssen, A., 1999, Tilted sandpiles, interface depinning and earthquake models, Phys. Rev.E 59(4), 4169–4174. → pp 177, 178, 187, 193, 227.Google Scholar
Malthe-Sørenssen, A., J., Feder, K., Christensen, V., Frette, and T., Jøssang, 1999, Surface fluctuations and correlations in a pile of rice, Phys. Rev. Lett. 83(4), 764–767. → pp 193, 197.CrossRefGoogle Scholar
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature (Freeman, New York, NY, USA). → pp 4, 74.Google Scholar
Manna, S. S., 1990, Large-scale simulation of avalanche cluster distribution in sand pile model, J. Stat. Phys. 59(1/2), 509–521. → pp 23, 88, 92, 99, 102, 103, 134, 339, 417.CrossRefGoogle Scholar
Manna, S. S., 1991a, Critical exponents of the sand pile models in two dimensions, PhysicaA 179(2), 249–268. → pp 23, 92, 93, 100, 103.Google Scholar
Manna, S. S., 1991b, Two-state model of self-organized criticality, J. Phys. A: Math. Gen. 24(7), L363–L369. → pp 22, 82, 162, 163, 164, 166–169, 185, 201, 339, 485.CrossRefGoogle Scholar
Manna, S. S., A. D., Chakrabarti, and R., Cafiero, 1999, Critical states in a dissipative sandpile model, Phys. Rev.E 60(5), R5005–R5008. → p 289.Google Scholar
Manna, S. S., L. B., Kiss, and J., Kertész, 1990, Cascades and self-organized criticality, J. Stat. Phys. 61(3/4), 923–932. → pp 88, 129, 225, 327, 334.CrossRefGoogle Scholar
Mantegna, R. N., and H. E., Stanley, 1995, Scaling behaviour in the dynamics of an economic index, Nature 376(6535), 46–49. → p 75.CrossRefGoogle Scholar
Mantegna, R. N., and H. E., Stanley, 1997, Stock market dynamics and turbulence: parallel analysis of fluctuation phenomena, PhysicaA 239(1–3), 255–266. → p 75.Google Scholar
Mari, D. D., and S., Kotz, 2001, Correlation and Dependence (Imperial College Press, London, UK). → p 212.CrossRefGoogle Scholar
Marinari, E., G., Parisi, D., Ruelle, and P., Windey, 1983, Random walk in a random environment and 1/f noise, Phys. Rev. Lett. 50(17), 1223–1225. → p 15.CrossRefGoogle Scholar
Markošová, M., 2000a, Ricepiles: experiments and models, Prog. Theor. Phys. Suppl. 139, 489–495. → pp 189, 192, 284, 296.Google Scholar
Markošová, M., 2000b, Universality classes for the ricepile model with absorbing properties, Phys. Rev.E 61(1), 253–260. → pp 23, 189, 192, 284, 295, 296.Google ScholarPubMed
Markošová, M., and P., Markoš, 1992, Analytical calculation of the attractor periods of deterministic sandpiles, Phys. Rev.A 46(6), 3531–3534. → p 96.CrossRefGoogle ScholarPubMed
Marro, J., and R., Dickman, 1999, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, New York, NY, USA). → pp 155, 301, 305, 307, 330, 336, 337.CrossRefGoogle Scholar
Marsili, M., 1994a, Renormalization group approach to the self-organization of a simple model of biological evolution, Europhys. Lett. 28(6), 385–390. → pp 143, 152, 156, 161, 268.CrossRefGoogle Scholar
Marsili, M., 1994b, Run time statistics in models of growth in disordered media, J. Stat. Phys. 77(3/4), 733–754, erratum (Gabrielli et al., 1996). → pp 149, 150, 152, 419.CrossRefGoogle Scholar
Marsili, M., G., Caldarelli, and M., Vendruscolo, 1996, Quenched disorder, memory, and self-organization, Phys. Rev.E 53(1), R13–R16. → pp 149, 157.Google ScholarPubMed
Marsili, M., P. De Los, Rios, and S., Maslov, 1998, Expansion around the mean-field solution of the Bak-Sneppen model, Phys. Rev. Lett. 80(7), 1457–1460. → pp 143, 152, 157.CrossRefGoogle Scholar
Martys, N., M. O., Robbins, and M., Cieplak, 1991, Scaling relations for interface motion through disordered media: application to two-dimensional fluid invasion, Phys. Rev.B 44(22), 12294–12306. → p 301.CrossRefGoogle Scholar
Maslov, S., 1995, Time directed avalanches in invasion models, Phys. Rev. Lett. 74(4), 562–565. → p 145.CrossRefGoogle ScholarPubMed
Maslov, S., 1996, Infinite series of exact equations in the Bak-Sneppen model of biological evolution, Phys. Rev. Lett. 77(6), 1182–1185. → pp 143, 157.CrossRefGoogle ScholarPubMed
Maslov, S., and M., Paczuski, 1994, Scaling theory of depinning in the Sneppen model, Phys. Rev.E 50(2), R643–R646. → p 295.Google ScholarPubMed
Maslov, S., and Y.-C., Zhang, 1995, Exactly solved model of self-organized criticality, Phys. Rev. Lett. 75(8), 1550–1553. → pp 206, 288.CrossRefGoogle ScholarPubMed
Maslov, S., and Y.-C., Zhang, 1996, Self-organized critical directed percolation, PhysicaA 223(1–2), 1–6. → pp 81, 178, 179, 295, 485.Google Scholar
Masuda, N., K.-I., Goh, and B., Kahng, 2005, Extremal dynamics on complex networks: analytic solutions, Phys. Rev.E 72(6), 066106 (6 pp), arXiv:cond–mat/0508623v1. → p 159.Google ScholarPubMed
Matsumoto, M., 2008, Mersenne Twister Home Page, available from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html, accessed 9 October 2008. → pp 371, 380.Google Scholar
Matsumoto, M., and T., Nishimura, 1998, Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator, ACM Trans. Model. Comput. Sim. 8(1), 3–30. → p 380.Google Scholar
Maunuksela, J., M., Myllys, O.-P., Kähkönen, J., Timonen, N., Provatas, M. J., Alava, and T., Ala-Nissila, 1997, Kinetic roughening in slow combustion of paper, Phys. Rev. Lett. 79(8), 1515–1518. → p 301.CrossRefGoogle Scholar
Mazzoni, A., F. D., Broccard, E., Garcia-Perez, P., Bonifazi, M. E., Ruaro, and V., Torre, 2007, On the dynamics of the spontaneous activity in neuronal networks, PLoS ONE 2(5), e439. → p 70.CrossRefGoogle ScholarPubMed
McComb, W. D., 2004, Renormalization Methods (Oxford University Press, New York, NY, USA). → pp 266, 394.Google Scholar
McKane, A., M., Droz, J., Vannimenus, and D., Wolf (editors), 1995, Scale Invariance, Interfaces, and Non-Equilibrium Dynamics (Plenum Press, New York, NY, USA), NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → p 6.CrossRef
Meakin, P., 1998, Fractals, Scaling and Growth far from Equilibrium (Cambridge University Press, Cambridge, UK). → pp 205, 301, 302, 313.Google Scholar
Medina, E., T., Hwa, M., Kardar, and Y.-C., Zhang, 1989, Burgers equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth, Phys. Rev.A 39(6), 3053–3075. → pp 267, 320, 324.CrossRefGoogle ScholarPubMed
Meester, R., and C., Quant, 2005, Connections between ‘self-organised’ and ‘classical’ criticality, Markov Process. Relat. Fields 11(2), 355–370. → pp 101, 330.Google Scholar
Meester, R., and D., Znamenski, 2002, Non-triviality of the discrete Bak-Sneppen evolution model, J. Stat. Phys. 109(5/6), 987–1004, arXiv:cond-mat/0301480. → p 158.CrossRefGoogle Scholar
Meester, R., and D., Znamenski, 2003, Limit behavior of the Bak–Sneppen evolution model, Ann. Probab. 31(4), 1986–2002, arXiv:cond-mat/0301479. → pp 151, 157.Google Scholar
Mehta, A., 1992, Real sandpiles: dilatancy, hysteresis and cooperative dynamics, PhysicaA 186(1–2), 121 – 153. → pp 56, 85.Google Scholar
Mehta, A., 2007, Granular Physics (Cambridge University Press, Cambridge, UK). → p 56.CrossRefGoogle Scholar
Mehta, A., and G., Barker, 1991, The self-organising sand pile, New Sci. 130(1773), 40–43. → p 56.Google Scholar
Mehta, A., and G. C., Barker, 1994, Disorder, memory and avalanches in sandpiles, Europhys. Lett. 27(7), 501–506. → pp 17, 56, 134, 207.CrossRefGoogle Scholar
Mehta, A., J. M., Luck, and R. J., Needs, 1996, Dynamics of sandpiles: physical mechanisms, coupled stochastic equations, and alternative universality classes, Phys. Rev.E 53(1), 92. → p 299.Google ScholarPubMed
Mehta, A. P., A. C., Mills, K. A., Dahmen, and J. P., Sethna, 2002, Universal pulse shape scaling function and exponents: critical test for avalanche models applied to Barkhausen noise, Phys. Rev.E 65(4), 046139 (6 pp). → p 64.Google ScholarPubMed
Meisel, L. V., and P. J., Cote, 1992, Power laws, flicker noise, and the Barkhausen effect, Phys. Rev.B 46(17), 10822–10828. → p 63.CrossRefGoogle ScholarPubMed
Melby, P., J., Kaidel, N., Weber, and A., Hübler, 2000, Adaptation to the edge of chaos in the self-adjusting logistic map, Phys. Rev. Lett. 84(26), 5991–5993. → p 332.CrossRefGoogle ScholarPubMed
Mendes, J. F. F., 2000, Critical behavior of models with infinitely many absorbing states, Braz. J. Phys. 30(1). → p 177.CrossRefGoogle Scholar
Mendes, J. F. F., R., Dickman, M., Henkel, and M. C., Marques, 1994, Generalized scaling for models with multiple absorbing states, J. Phys. A: Math. Gen. 27(9). → pp 170, 178.CrossRefGoogle Scholar
Meng, T.-c., R., Rittel, and Y., Zhang, 1999, Inelastic diffraction and color-singlet gluon clusters in high-energy hadron-hadron and lepton-hadron collisions, Phys. Rev. Lett. 82(10), 2044–2047. → p 72.CrossRefGoogle Scholar
Metropolis, N., A. W., Rosenbluth, M. N., Rosenbluth, A. H., Teller, and E., Teller, 1953, Equation of state calculations by fast computing machines, J. Chem. Phys. 21(6), 1087–1092. → p 357.CrossRefGoogle Scholar
Middleton, A. A., 1992, Asymptotic uniqueness of the sliding state for charge-density waves, Phys. Rev. Lett. 68(5), 670–673. → pp 205, 302.CrossRefGoogle ScholarPubMed
Middleton, A. A., and C., Tang, 1995, Self-organized criticality in nonconserved systems, Phys. Rev. Lett. 74(5), 742–745. → pp 133–136, 139, 140, 321, 328.CrossRefGoogle ScholarPubMed
Mikeska, B., 1996, A Renormalization-Group approach to Self-Organized Criticality, Ph.D. Thesis, Universität Hamburg, Hamburg, Germany. → p 268.Google Scholar
Miller, S. L., W. M., Miller, and P. J., McWhorter, 1993, Extremal dynamics: a unifying physical explanation of fractals, 1/f noise, and activated processes, J. Appl. Phys. 73(6), 2617–2628. → pp 320, 344.CrossRefGoogle Scholar
Milshtein, E., O., Biham, and S., Solomon, 1998, Universality classes in isotropic, Abelian, and non-Abelian sandpile models, Phys. Rev.E 58(1), 303–310. → pp 23, 100, 106, 164, 166, 277, 284, 285.Google Scholar
Mineshige, S., N. B., Ouchi, and H., Nishimori, 1994a, On the generation of 1/f Fluctuations in X-rays from black-hole objects, Publ. Astron. Soc. Jpn. 46, 97–105. → p 72.Google Scholar
Mineshige, S., M., Takeuchi, and H., Nishimori, 1994b, Is a black hole accretion disk in a self-organized critical state?, Astrophys. J. 435, L125–L128. → p 72.CrossRefGoogle Scholar
Miramontes, O., and P., Rohani, 1998, Intrinsically generated coloured noise in laboratory insect populations, Proc. R. Soc. London, Ser.B 265(1398), 785–792. → p 74.Google Scholar
Moeur, W. A., P. K., Day, F.-C., Liu, S. T. P., Boyd, M. J., Adriaans, and R. V., Duncan, 1997, Observation of self-organized criticality near the superfluid transition in 4He, Phys. Rev. Lett. 78(12), 2421–2424. → p 62.CrossRefGoogle Scholar
Mohanty, P. K., and D., Dhar, 2002, Generic sandpile models have directed percolation exponent, Phys. Rev. Lett. 89(10), 104303 (4 pp). → pp 178, 179, 296–298.CrossRefGoogle Scholar
Mohanty, P. K., and D., Dhar, 2007, Critical behavior of sandpile models with sticky grains, PhysicaA 384(1), 34–38, Proceedings of the International Conference on Statistical Physics, Raichak and Kolkata, India, January 5–9, 2007. → pp 178, 179, 296.Google Scholar
Moloney, N. R., and G., Pruessner, 2003, Asynchronously parallelized percolation on distributed machines, Phys. Rev.E 67(3), 037701 (4 pp), arXiv:cond-mat/0211240. → p 124.Google ScholarPubMed
Montakhab, A., and J. M., Carlson, 1998, Avalanches, transport, and local equilibrium in self-organized criticality, Phys. Rev.E 58(5), 5608–5619. → pp 333, 343.Google Scholar
Montroll, E. W., and M. F., Shlesinger, 1982, On 1/f noise and other distributions with long tails, Proc. Natl. Acad. Sci. USA 79(10), 3380–3383. → p 15.CrossRefGoogle ScholarPubMed
Morand, J., G., Pruessner, and K., Christensen, 2010, Correlations of avalanche sizes in the Oslo model (unpublished). → p 396.
Moreno, Y., J. B., Gómez, and A. F., Pacheco, 1999, Modified renormalization strategy for sandpile models, Phys. Rev.E 60(6), 7565–7568. → p 268.Google ScholarPubMed
Moreno, Y., and A., Vazquez, 2002, The Bak-Sneppen model on scale-free networks, Europhys. Lett. 57(5), 765–771. → p 159.CrossRefGoogle Scholar
Moßner, W. K., B., Drossel, and F., Schwabl, 1992, Computer simulations of the forest-fire model, PhysicaA 190(3–4), 205–217. → pp 113, 115.Google Scholar
Mousseau, N., 1996, Synchronization by disorder in coupled systems, Phys. Rev. Lett. 77(5), 968–971. → p 134.CrossRefGoogle ScholarPubMed
Muñoz, M. A., 2003, Multiplicative noise in non-equilibrium phase transitions: a tutorial, arXiv:cond-mat/0303650v2 (unpublished). → p 302.
Muñoz, M. A., R., Dickman, R., Pastor-Satorras, A., Vespignani, and S., Zapperi, 2001, Sandpiles and absorbing-state phase transitions: recent results and open problems, AIP Conf. Proc. 574(1), 102–110, arXiv:cond-mat/0011447. → pp 6, 177–179, 266, 305, 331, 333.Google Scholar
Muñoz, M. A., R., Dickman, A., Vespignani, and S., Zapperi, 1999, Avalanche and spreading exponents in systems with absorbing states, Phys. Rev.E 59(5), 6175–6179. → pp 177, 305, 306, 336, 340–342.Google ScholarPubMed
Murray, J. D., 2003, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer-Verlag, Berlin, Germany), 3rd edition. → pp 112, 114, 115.Google Scholar
Nagel, K., and H. J., Herrmann, 1993, Deterministic models of traffic jams, PhysicaA 199(2), 254–269. → p 76.Google Scholar
Nagel, S. R., 1992, Instabilities in a sandpile, Rev. Mod. Phys. 64(1), 321–325. → p 56.CrossRefGoogle Scholar
Nakanishi, H., 1990, Cellular-automaton model of earthquakes with deterministic dynamics, Phys. Rev.A 41(12), 7086–7089. → p 126.CrossRefGoogle ScholarPubMed
Nakanishi, H., and K., Sneppen, 1997, Universal versus drive-dependent exponents for sandpile models, Phys. Rev.E 55(4), 4012–4016. → pp 21, 23, 44, 100, 165, 168, 170, 175, 177, 178, 180, 183, 184, 186, 187, 198, 227, 245, 248, 294, 306, 316, 339.Google Scholar
Narayan, O., 1996, Self-similar Barkhausen noise in magnetic domain wall motion, Phys. Rev. Lett. 77(18), 3855–3857. → p 64.CrossRefGoogle ScholarPubMed
Narayan, O., and D. S., Fisher, 1992a, Critical behavior of sliding charge-density waves in 4-epsilon dimensions, Phys. Rev.B 46(18), 11520–11549. → p 299.CrossRefGoogle ScholarPubMed
Narayan, O., and D. S., Fisher, 1992b, Dynamics of sliding charge-density waves in 4-epsilon dimensions, Phys. Rev. Lett. 68(24), 3615–3618. → p 299.CrossRefGoogle ScholarPubMed
Narayan, O., and D. S., Fisher, 1993, Threshold critical dynamics of driven interfaces in random media, Phys. Rev.B 48(10), 7030–7042. → pp 299, 315.CrossRefGoogle ScholarPubMed
Narayan, O., and A. A., Middleton, 1994, Avalanches and the renormalization group for pinned charge-density waves, Phys. Rev.B 49(1), 244–256. → p 299.CrossRefGoogle Scholar
Nattermann, T., S., Stepanow, L.-H., Tang, and H., Leschhorn, 1992, Dynamics of interface depinning in a disordered medium, J. Phys. II (France) 2, 1483–1488, for details see Leschhorn et al. (1997). → pp 179, 182, 205, 266, 267, 299, 315.CrossRefGoogle Scholar
Neelin, J. D., O., Peters, and K., Hales, 2009, The transition to strong convection, J. Atmos. Sci. 66(8), 2367–2384. → p 72.CrossRefGoogle Scholar
Nemeth, E., G., Snyder, S., Seebass, and T. R., Hein, 1995, UNIX® System Administration Handbook (Prentice Hall, Upper Saddle River, NJ, USA), 2nd edition. → p 358.Google Scholar
Nerone, N., and S., Gabbanelli, 2001, Surface fluctuations and the inertia effect in sandpiles, Gran. Matter 3(1), 117–120. → p 56.CrossRefGoogle Scholar
Newman, D. E., B. A., Carreras, P. H., Diamond, and T. S., Hahm, 1996, The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport, Phys. Plasmas 3(5), 1858–1866. → pp 72, 193.CrossRefGoogle Scholar
Newman, M. E. J., 1996, Self-organized criticality, evolution and the fossil extinction record, Proc. R. Soc. London, Ser.B 263(1376), 1605–1610, see Newman (1997a,b). → pp 69, 135, 158, 159, 438.Google Scholar
Newman, M. E. J., 1997a, Evidence for self-organized criticality in evolution, PhysicaD 107(2–4), 293–296, Proceedings of the 16th Annual International Conference of the Center for Nonlinear Studies, Los Alamos, NM, USA, May 13–17, 1996, see Newman (1996, 1997b). → pp 69, 159, 438.Google Scholar
Newman, M. E. J., 1997b, A model of mass extinction, J. Theor. Biol. 189, 235–252, see Newman (1996, 1997a). → pp 69, 159, 438.CrossRefGoogle ScholarPubMed
Newman, M. E. J., and G. T., Barkema, 1999, Monte Carlo Methods in Statistical Physics (Oxford University Press, New York, NY, USA). → pp 220, 358, 361, 371.Google Scholar
Newman, M. E. J., and G. J., Eble, 1999, Power spectra of extinction in the fossil record, Proc. R. Soc. London, Ser.B 266(1425), 1267–1270. → p 69.Google Scholar
Newman, M. E. J., M., Girvan, and J. D., Farmer, 2002, Optimal design, robustness, and risk aversion, Phys. Rev. Lett. 89(2), 028301 (4 pp), arXiv:cond-mat/0202330. → p 345.CrossRefGoogle Scholar
Newman, M. E. J., and B. W., Roberts, 1995, Mass extinction: evolution and the effects of external influences on unfit species, Proc. R. Soc. London, Ser.B 260(1357), 31–37, arXiv:adap-org/9410004v1. → p 159.Google Scholar
Newman, M. E. J., and K., Sneppen, 1996, Avalanches, scaling, and coherent noise, Phys. Rev.E 54(6), 6226–6231. → pp 159, 192, 193, 342.Google ScholarPubMed
Newman, M. E. J., and R. M., Ziff, 2000, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett. 85(19), 4104–4107. → p 319.CrossRefGoogle ScholarPubMed
Newman, T. J., A. J., Bray, and M. A., Moore, 1990, Growth of order in vector spin systems and self-organized criticality, Phys. Rev.B 42(7), 4514–4523. → p 343.CrossRefGoogle ScholarPubMed
Noever, D. A., 1993, Himalayan sandpiles, Phys. Rev.E 47(1), 724–725. → p 57.Google ScholarPubMed
Nowak, E. R., O. W., Taylor, L., Liu, H. M., Jaeger, and T. I., Selinder, 1997, Magnetic flux instabilities in superconducting niobium rings: tuning the avalanche behavior, Phys. Rev.B 55(17), 11702–11705. → p 60.CrossRefGoogle Scholar
Nowak, U., and K. D., Usadel, 1990, Slow relaxation of diluted antiferromagnets, PhysicaB 165–166(Part 1), 211 – 212, Proceedings of the 19th International Conference on Low Temperature Physics, Brighton, UK, August 16–22, 1990. → p 343.Google Scholar
Nowak, U., and K. D., Usadel, 1991, Nonexponential relaxation of diluted antiferromagnets, Phys. Rev.B 43(1), 851–853. → p 343.CrossRefGoogle ScholarPubMed
O'Brien, K. P., and M. B., Weissman, 1994, Statistical characterization of Barkhausen noise, Phys. Rev.E 50(5), 3446–3452. → pp 63, 185.Google Scholar
Obukhov, S. P., 1990, Self-organized criticality: Goldstone modes and their interactions, Phys. Rev. Lett. 65(12), 1395–1398. → pp 342, 343.CrossRefGoogle Scholar
Ódor, G., 2004, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76(3), 663–724, arXiv:cond-mat/0205644. → pp 20, 177, 181, 293.CrossRefGoogle Scholar
Ódor, G., and N., Menyhárd, 2008, Crossovers from parity conserving to directed percolation universality, Phys. Rev.E 78(4), 041112 (7 pp). → p 155.Google ScholarPubMed
Olami, Z., and K., Christensen, 1992, Temporal correlations, universality, and multifractality in a spring-block model of earthquakes, Phys. Rev.A 46(4), R1720–R1723. → p 67.CrossRefGoogle Scholar
Olami, Z., H. J. S., Feder, and K., Christensen, 1992, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68(8), 1244–1247, comment (Klein and Rundle, 1993). → pp 82, 126–128, 130, 133–135, 138, 139, 321, 428, 485.CrossRefGoogle Scholar
Olami, Z., I., Procaccia, and R., Zeitak, 1994, Theory of self-organized interface depinning, Phys. Rev.E 49(2), 1232–1237. → pp 295, 299.Google ScholarPubMed
Olami, Z., I., Procaccia, and R., Zeitak, 1995, Interface roughening in systems with quenched disorder, Phys. Rev.E 52(4), 3402–3414. → pp 295, 299.Google ScholarPubMed
Olson, C. J., C., Reichhardt, and F., Nori, 1997, Superconducting vortex avalanches, voltage bursts, and vortex plastic flow: effect of the microscopic pinning landscape on the macroscopic properties, Phys. Rev.B 56(10), 6175–6194. → p 61.CrossRefGoogle Scholar
Omori, F., 1894, On the aftershocks of earthquakes, J. Coll. Sci., Imp. Univ. Tokyo 7, 111–200. → p 67.Google Scholar
Onuki, A., 1987, The He I-He II interface in He4 and He3-He4near the Superfluid transition, Jpn. J. Appl. Phys. 26S3(Supplement 26-3-1), 365–366, proceedings of the 18th International Conference on Low Temperature Physics, Kyoto, Japan, August 20–26, 1987. → p 61.Google Scholar
Onuki, A., 1996, Superfluid transition in 4He in gravity and heat flow, J. Low Temp. Phys. 104(3), 133–142. → p 61.CrossRefGoogle Scholar
Ooi, S., T., Shibaushi, and T., Tamegai, 2000, Vortex avalanches in the vortex lattice phase of Bi2Sr2CaCu2O8+y, PhysicaB 284–288(Part 1), 775 – 776. → p 60.Google Scholar
Opper, M., and D., Saad (editors), 2001, Advanced Mean Field Methods, Neural Information Processing Series (MIT Press, Cambridge, MA, USA). → p 394.
Otsuka, M., 1971, A simulation of earthquake occurrence, part 1, A mechanical model (in Japanese), Jishin (also Zisin, J. Seismol. Soc. Jpn.) 24, 13–25. → p 125.Google Scholar
Otsuka, M., 1972a, A chain-reaction-type source model as a tool to interpret the magnitude-frequency relation of earthquakes, J. Phys. Earth 20, 34–45. → p 125.CrossRefGoogle Scholar
Otsuka, M., 1972b, A simulation of earthquake occurrence, Phys. Earth Planet. Inter. 6, 311–315. → p 125.CrossRefGoogle Scholar
Pacheco, J. F., C. H., Scholz, and L. R., Sykes, 1992, Changes in frequency-size relationship from small to large earthquakes, Nature 355(6355), 71–73. → pp 66, 67, 139.CrossRefGoogle Scholar
Paczuski, M., 1995, Dynamic scaling: distinguishing self-organized from generically critical systems, Phys. Rev.E 52(3), R2137–R2140. → p 321.Google ScholarPubMed
Paczuski, M., and P., Bak, 1993, Theory of the one-dimensional forest-fire model, Phys. Rev.E 48(5), R3214–R3216. → pp 116, 121, 124.Google ScholarPubMed
Paczuski, M., P., Bak, and S., Maslov, 1995, Laws for stationary states in systems with extremal dynamics, Phys. Rev. Lett. 74(21), 4253–4256. → p 149.CrossRefGoogle ScholarPubMed
Paczuski, M., and K. E., Bassler, 2000, Theoretical results for sandpile models of SOC with multiple topplings, arXiv:cond-mat/0005340v2 (unpublished). → pp 22, 101, 107, 111, 165, 170, 172, 206–208, 249, 251, 268, 279, 280, 282–286, 288–290, 292, 293, 321, 327, 334.
Paczuski, M., and S., Boettcher, 1996, Universality in sandpiles, interface depinning, and earthquake models, Phys. Rev. Lett. 77(1), 111–114, largely identical to proceedings article (Boettcher and Paczuski, 1997b). → pp 125, 126, 162, 177, 178, 180, 182, 183, 184 187, 189, 190, 197, 198, 203, 206, 268, 299, 300, 302, 393, 404.CrossRefGoogle ScholarPubMed
Paczuski, M., and S., Boettcher, 1997, Avalanches and waves in the Abelian sandpile model, Phys. Rev.E 56(4), R3745–R3748. → p 100.Google Scholar
Paczuski, M., S., Boettcher, and M., Baiesi, 2005, Interoccurrence times in the Bak-Tang-Wiesenfeld sandpile model: a comparison with the observed statistics of solar flares, Phys. Rev. Lett. 95(18), 181102 (4 pp). → p 72.CrossRefGoogle ScholarPubMed
Paczuski, M., S., Maslov, and P., Bak, 1994a, Erratum: field theory for a model of self-organized criticality, Europhys. Lett. 28(4), 295–296. → pp 142, 147, 155, 157, 293.CrossRefGoogle Scholar
Paczuski, M., S., Maslov, and P., Bak, 1994b, Field theory for a model of self-organized criticality, Europhys. Lett. 27(2), 97–102. → pp 142, 143, 145, 146, 150, 154, 155, 157, 293.CrossRefGoogle Scholar
Paczuski, M., S., Maslov, and P., Bak, 1996, Avalanche dynamics in evolution, growth, and depinning models, Phys. Rev.E 53(1), 414–443, arXiv:adap-org/9510002. → pp 6, 142–147, 149, 151, 153, 156, 157, 160, 161, 178, 187, 203, 251, 283, 293, 299, 307, 308, 310, 314, 315, 345, 393.Google ScholarPubMed
Pan, G.-J., D.-M., Zhang, Z.-H., Li, H.-Z., Sun, and Y.-P., Ying, 2005a, Critical behavior in non-Abelian deterministic directed sandpile, Phys. Lett.A 338(3–5), 163–168. → pp 286, 287.CrossRefGoogle Scholar
Pan, G.-J., D.-M., Zhang, H.-Z., Sun, and Y.-P., Yin, 2005b, Universality class in Abelian sandpile models with stochastic toppling rules, Commun. Theor. Phys. 44(3), 483–486. → pp 177, 178, 187.CrossRefGoogle Scholar
Pan, G.-J., D.-M., Zhang, Y.-P., Yin, and M.-H., He, 2006, Avalanche dynamics in quenched random directed sandpile models, Chin. Phys. Lett. 23(10), 2811–2814. → p 287.Google Scholar
Papa, A. R. R., and L., da Silva, 1997, Earthquakes in the brain, Theor. Biosci. 116, 321–327. → pp 70, 149.Google Scholar
Papadopoulos, M. C., M., Hadjitheodossiou, C., Chrysostomou, C., Hardwidge, and B. A., Bell, 2001, Is the National Health Service at the edge of chaos?, J. R. Soc. Med. 94(12), 613–616. → p 75.CrossRefGoogle ScholarPubMed
Papoyan, V. V., and A. M., Povolotsky, 1997, Renormalization group study of sandpile on the triangular lattice, PhysicaA 246(1–2), 241 – 252. → p 268.Google Scholar
Parisi, G., 1998, Statistical Field Theory (Physica B, Reading, MA, USA). → p 343.Google Scholar
Park, K., S., Kang, and I., Kim, 2005, Absorbing phase transition with a conserved field, Phys. Rev.E 71(6), 066129 (5 pp). → p 177.Google ScholarPubMed
Park, S.-C., 2010, Absence of the link between self-organized criticality and deterministic fixed energy sandpiles, arXiv:1001.3359 (unpublished). → pp 338, 342.
Pastor-Satorras, R., 1997, Multifractal properties of power-law time sequences: application to rice piles, Phys. Rev.E 56(5), 5284–5294. → p 195.Google Scholar
Pastor-Satorras, R., and A., Vespignani, 2000a, Anomalous scaling in the Zhang model, Eur. Phys. J.B 18(2), 197–200. → pp 104, 106, 107, 110, 178.CrossRefGoogle Scholar
Pastor-Satorras, R., and A., Vespignani, 2000b, Corrections to scaling in the forest-fire model, Phys. Rev.E 61(5), 4854–4859. → pp 120, 125.Google ScholarPubMed
Pastor-Satorras, R., and A., Vespignani, 2000c, Critical behavior and conservation in directed sandpiles, Phys. Rev.E 62(5), 6195–6205, see Pastor-Satorras and Vespignani (2000e). → pp 286, 328, 334, 441.Google ScholarPubMed
Pastor-Satorras, R., and A., Vespignani, 2000d, Field theory of absorbing phase transitions with a nondiffusive conserved field, Phys. Rev.E 62(5), R5875–R5878. → pp 162, 177, 178, 182, 266, 333.Google ScholarPubMed
Pastor-Satorras, R., and A., Vespignani, 2000e, Universality classes in directed sandpile models, J. Phys. A: Math. Gen. 33(3), L33–L39, see Pastor-Satorras and Vespignani (2000c). → pp 22, 206, 220, 277, 284, 286, 288, 292, 441.CrossRefGoogle Scholar
Pastor-Satorras, R., and A., Vespignani, 2001, Reaction-diffusion system with self-organized critical behavior, Eur. Phys. J.B 19(4), 583–587, arXiv:cond-mat/0101358. → pp 44, 168, 178, 294, 306, 316.CrossRefGoogle Scholar
Patzlaff, H., and S., Trimper, 1994, Analytical approach to the forest-fire model, Phys. Lett.A 189(3), 187–192. → pp 120, 122.CrossRefGoogle Scholar
Peixoto, T. P., and C. P. C., Prado, 2004, Statistics of epicenters in the Olami-Feder-Christensen model in two and three dimensions, PhysicaA 342(1–2), 171–177. → pp 138, 141.Google Scholar
Peliti, L., 1985, Path integral approach to birth-death processes on a lattice, J. Phys. (Paris) 46, 1469–1483. → p 266.CrossRefGoogle Scholar
Peng, C. K., S. V., Buldyrev, A. L., Goldberger, S., Havlin, F., Sciortino, M., Simons, and H. E., Stanley, 1992, Long-range correlations in nucleotide sequences, Nature 356(6365), 168–170. → p 74.CrossRefGoogle Scholar
Peng, C.-K., S., Havlin, H. E., Stanley, and A. L., Goldberger, 1995, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos 5(1), 82–87. → p 74.CrossRefGoogle ScholarPubMed
Peng, C.-K., J., Mietus, J. M., Hausdorff, S., Havlin, H. E., Stanley, and A. L., Goldberger, 1993, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett. 70(9), 1343–1346. → p 74.CrossRefGoogle Scholar
Peng, G., 1992, Self-organized critical state in a directed sandpile automaton on Bethe lattices: equivalence to site percolation, J. Phys. A: Math. Gen. 25(20), 5279–5282. → p 292.CrossRefGoogle Scholar
Peng, G., and H. J., Herrmann, 1993, Boundary-induced anisotropy of the avalanches in the sandpile automaton, PhysicaA 199(3–4), 476 – 484. → p 324.Google Scholar
Pepke, S. L., and J. M., Carlson, 1994, Predictability of self-organizing systems, Phys. Rev.E 50(1), 236–242. → pp 67, 355.Google ScholarPubMed
Pérez, C. J., Á., Corral, A., Díaz-Guilera, K., Christensen, and A., Arenas, 1996, On self-organized criticality and synchronization in lattice models of coupled dynamical systems, Int. J. Mod. Phys.B 10(10), 1111–1151. → pp 88, 109, 126, 128, 129, 203, 267.CrossRefGoogle Scholar
Perković, O., K., Dahmen, and J. P., Sethna, 1995, Avalanches, Barkhausen noise, and plain old criticality, Phys. Rev. Lett. 75(24), 4528–4531. → pp 63, 64.CrossRefGoogle ScholarPubMed
Peschel, I., X., Wang, M., Kaulke, and K., Hallberg (editors), 1999, Density-Matrix Renormalization, volume 528 of Lecture Notes in Physics (Springer-Verlag, Berlin, Germany). → pp 176, 202.CrossRef
Peskin, C. S., 1975, Mathematical Aspects of Heart Physiology (Courant Insititute of Mathematical Sciences, New York, NY, USA). → p 135.Google Scholar
Peters, O., and K., Christensen, 2002, Rain: relaxations in the sky, Phys. Rev.E 66(3), 036120 (9 pp). → p 71.Google Scholar
Peters, O., and M., Girvan, 2009, Universality under conditions of self-tuning, arXiv: 0902.1956 (unpublished). → pp 330, 342.
Peters, O., C., Hertlein, and K., Christensen, 2002, A complexity view of rainfall, Phys. Rev. Lett. 88(1), 018701 (4 pp), arXiv:cond-mat/0201468. → p 71.Google Scholar
Peters, O., and J. D., Neelin, 2006, Critical phenomena in atmospheric precipitation, Nat. Phys. 2(6), 393–396. → p 71.CrossRefGoogle Scholar
Petri, A., G., Paparo, A., Vespignani, A., Alippi, and M., Costantini, 1994, Experimental evidence for critical dynamics in microfracturing processes, Phys. Rev. Lett. 73(25), 3423–3426. → p 64.CrossRefGoogle ScholarPubMed
Pfeuty, P., and G., Toulouse, 1977, Introduction to the Renormalization Group and to Critical Phenomena (John Wiley & Sons, Chichester, UK). → pp 38, 337.Google Scholar
Pietronero, L., A., Erzan, and C., Evertsz, 1988, Theory of fractal growth, Phys. Rev. Lett. 61(7), 861–864. → p 267.CrossRefGoogle ScholarPubMed
Pietronero, L., and W. R., Schneider, 1991, Fixed scale transformation approach to the nature of relaxation clusters in self-organized criticality, Phys. Rev. Lett. 66(18), 2336–2339. → p 267.CrossRefGoogle ScholarPubMed
Pietronero, L., P., Tartaglia, and Y.-C., Zhang, 1991, Theoretical studies of self-organized criticality, PhysicaA 173(1–2), 22–44. → pp 108, 126, 133.Google Scholar
Pietronero, L., A., Vespignani, and S., Zapperi, 1994, Renormalization scheme for self-organized criticality in sandpile models, Phys. Rev. Lett. 72(11), 1690–1693. → pp 92, 101, 110, 121, 165, 168, 182, 267, 268, 292.CrossRefGoogle ScholarPubMed
Pimpinelli, A., and J., Villain, 1998, Physics of Crystal Growth (Cambridge University Press, Cambridge, UK). → p 301.CrossRefGoogle Scholar
Pinho, S. T. R., and R. F. S., Andrade, 2004, Power law sensitivity to initial conditions for abelian directed self-organized critical models, PhysicaA 344(3–4), 601–607, Proceedings of the International Workshop on Trends and Perspectives in Extensive and Non-extensive Statistical Mechanics, in Honor of the 60th birthday of Constantino Tsallis, Angra dos Reis, Brazil, Nov 19–21, 2003. → p 17.Google Scholar
Pinho, S. T. R., C. P. C., Prado, and O., Kinouchi, 1998, Absence of self-organized criticality in a random-neighbor version of the OFC stick-slip model, PhysicaA 257(1–4), 488–494. → pp 131, 328.Google Scholar
Pla, O., and F., Nori, 1991, Self-organized critical behavior in pinned flux lattices, Phys. Rev. Lett. 67(7), 919–922. → p 59.CrossRefGoogle ScholarPubMed
Pla, O., N. K., Wilkin, and H. J., Jensen, 1996, Avalanches in the Bean critical state: a characteristic of the random pinning potential, Europhys. Lett. 33(4), 297–302. → pp 60, 61.CrossRefGoogle Scholar
Planet, R., S., Santucci, and J., Ortín, 2009, Avalanches and non-Gaussian fluctuations of the global velocity of imbibition fronts, Phys. Rev. Lett. 102(9), 094502 (4 pp), comment (Pruessner, 2010). → pp 240, 445.CrossRefGoogle ScholarPubMed
Planet, R., S., Santucci, and J., Ortín, 2010, Planet, Santucci, and Ort in reply:, Phys. Rev. Lett. 105(2), 029402 (1 p), reply to comment (Pruessner, 2010). → pp 240, 445.CrossRefGoogle Scholar
Plourde, B., F., Nori, and M., Bretz, 1993, Water droplet avalanches, Phys. Rev. Lett. 71(17), 2749–2752. → p 57.CrossRefGoogle ScholarPubMed
Politzer, P. A., 2000, Observation of avalanchelike phenomena in a magnetically confined plasma, Phys. Rev. Lett. 84(6), 1192–1195. → p 72.CrossRefGoogle Scholar
Portugali, J., 2000, Self-organization and the City (Springer-Verlag, Berlin, Germany). → p 76.CrossRefGoogle Scholar
Pradhan, P., and D., Dhar, 2006, Probability distribution of residence times of grains in models of rice piles, Phys. Rev.E 73(2), 021303 (12 pp), arXiv:cond-mat/0608144. → pp 187, 197, 209.Google ScholarPubMed
Pradhan, P., and D., Dhar, 2007, Sampling rare fluctuations of height in the Oslo ricepile model, J. Phys. A: Math. Theor. 40(11), 2639–2650, arXiv:cond-mat/0511237. → p 197.CrossRefGoogle Scholar
Pradhan, S., and B. K., Chakrabarti, 2001, Precursors of catastrophe in the Bak-Tang-Wiesenfeld, Manna, and random-fiber-bundle models of failure, Phys. Rev.E 65(1), 016113 (7 pp). → pp 165, 339.Google Scholar
Prado, C. P. C., and Z., Olami, 1992, Inertia and break of self-organized criticality in sandpile cellular-automata models, Phys. Rev.A 45(2), 665–669. → p 56.CrossRefGoogle ScholarPubMed
Press, W. H., 1978, Flicker noises in astronomy and elsewhere, Comments Astrophys. 7(4), 103–119. → p 4.Google Scholar
Press, W. H., S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery, 2007, Numerical Recipes (Cambridge University Press, Cambridge, UK), 3rd edition. → pp 220–222, 358, 371, 376, 380, 389.Google Scholar
Priezzhev, V. B., 1994, Structure of two-dimensional sandpile. I. Height probabilities, J. Stat. Phys. 74(5/6), 955–979. → pp 99, 100.CrossRefGoogle Scholar
Priezzhev, V. B., 2000, The upper critical dimension of the Abelian sandpile model, J. Stat. Phys. 98(3/4), 667–684, arXiv:cond-mat/9904054. → p 104.CrossRefGoogle Scholar
Priezzhev, V. B., D., Dhar, A., Dhar, and S., Krishnamurthy, 1996a, Eulerian walkers as a model of self-organized criticality, Phys. Rev. Lett. 77(25), 5079–5082. → pp 81, 485.CrossRefGoogle ScholarPubMed
Priezzhev, V. B., E. V., Ivashkevich, A. M., Povolotsky, and C.-K., Hu, 2001, Exact phase diagram for an asymmetric avalanche process, Phys. Rev. Lett. 87(8), 084301 (4 pp). → pp 206, 288.CrossRefGoogle ScholarPubMed
Priezzhev, V. B., D. V., Ktitarev, and E. V., Ivashkevich, 1996b, Formation of avalanches and critical exponents in an Abelian sandpile model, Phys. Rev. Lett. 76(12), 2093–2096. → pp 92, 99, 100, 103.CrossRefGoogle Scholar
Privman, V., and M. E., Fisher, 1984, Universal critical amplitudes in finite-size scaling, Phys. Rev.B 30(1), 322–327. → pp 12, 14, 27, 39.CrossRefGoogle Scholar
Privman, V., P. C., Hohenberg, and A., Aharony, 1991, Universal critical-point amplitude relations, in Phase Transitions and Critical Phenomena, edited by C., Domb and J. L., Lebowitz (Academic Press, New York, NY, USA), volume 14, chapter 1, pp. 1–134. → pp 18, 20, 25, 39, 189, 227, 338, 339.Google Scholar
Pruessner, G., 2003a, Oslo rice pile model is a quenched Edwards-Wilkinson equation, Phys. Rev.E 67(3), 030301(R) (4 pp), arXiv:cond-mat/0209531. → pp 162, 178, 180, 182, 184, 186, 199, 203–205, 278, 282, 299, 300.Google ScholarPubMed
Pruessner, G., 2003b, Universality in the Oslo model (unpublished). → pp 107, 229, 284.
Pruessner, G., 2004a, Drift causes anomalous exponents in growth processes, Phys. Rev. Lett. 92(24), 246101 (4 pp), arXiv:cond-mat/0404007v2. → pp 207, 251, 291, 293.CrossRefGoogle ScholarPubMed
Pruessner, G., 2004b, Exact solution of the totally asymmetric Oslo model, J. Phys. A: Math. Gen. 37(30), 7455–7471, arXiv:cond-mat/0402564. → pp 174, 201, 206, 207, 222, 223, 232, 249, 271, 286, 289, 310.CrossRefGoogle Scholar
Pruessner, G., 2004c, Studies in Self-Organised Criticality, Ph.D. Thesis, Imperial College London, UK, accessed 19 November 2009, URL http://www.ma.imperial.ac.uk/~pruess/publications/thesis_final/. → pp 173, 174, 180, 189, 207, 395.Google Scholar
Pruessner, G., 2007, Equivalence of conditional and external field ensembles in absorbing-state phase transitions, Phys. Rev.E 76(6), 061103 (4 pp), arXiv:0712.0979v1. → pp 39, 181, 307, 336, 337, 395.Google Scholar
Pruessner, G., 2008, Block scaling in the directed percolation universality class, New J. Phys. 10(11), 113003 (13 pp), arXiv:0706.1144. → pp 21, 49, 134, 336, 337.CrossRefGoogle Scholar
Pruessner, G., 2009, Probability densities in complex systems, measuring, in Encyclopedia of Complexity and Systems Science, edited by R. A., Meyers (Springer-Verlag, New York, NY, USA), volume 7, pp. 6990–7009. → pp 230, 236, 388.Google Scholar
Pruessner, G., 2010, Comment on ‘avalanches and non-gaussian fluctuations of the global velocity of imbibition fronts’, Phys. Rev. Lett. 105(2), 029401 (1 p), comment on (Planet et al., 2009), reply (Planet et al., 2010). → pp 240, 443.CrossRefGoogle ScholarPubMed
Pruessner, G., and H. J., Jensen, 2002a, Broken scaling in the forest-fire model, Phys. Rev.E 65(5), 056707 (8 pp), arXiv:cond-mat/0201306. → pp 116, 119–121, 124, 125, 224.Google ScholarPubMed
Pruessner, G., and H. J., Jensen, 2002b, A solvable non-conservative model of self-organised criticality, Europhys. Lett. 58(2), 250–256, arXiv:cond-mat/0104567. → pp 130, 265, 328, 334.CrossRefGoogle Scholar
Pruessner, G., and H. J., Jensen, 2003, Anisotropy and universality: the Oslo model, the rice pile experiment and the quenched Edwards-Wilkinson equation, Phys. Rev. Lett. 91(24), 244303 (4 pp), arXiv:cond-mat/0307443. → pp 174, 187–189, 192, 206, 222, 286, 290, 291, 293.CrossRefGoogle ScholarPubMed
Pruessner, G., and H. J., Jensen, 2004, Efficient algorithm for the forest fire model, Phys. Rev.E 70(6), 066707 (25 pp), arXiv:cond-mat/0309173. → pp 44, 45, 119, 120, 124, 125, 224, 385.Google ScholarPubMed
Pruessner, G., D., Loison, and K.-D., Schotte, 2001, Monte Carlo simulation of an Ising model on a Sierpiński carpet, Phys. Rev.B 64(13), 134414 (10 pp). → pp 216, 229.CrossRefGoogle Scholar
Pruessner, G., and N. R., Moloney, 2003, Numerical results for crossing, spanning and wrapping in two-dimensional percolation, J. Phys. A: Math. Gen. 36(44), 11213–11228, arXiv:cond-mat/0309126. → p 226.CrossRefGoogle Scholar
Pruessner, G., and N. R., Moloney, 2006, Asynchronously parallelised percolation on distributed machines, in Computer Simulation Studies in Condensed-Matter Physics XVIII; Proceedings of the Eighteens Workshop, Athens, GA, USA, March 7–11, 2005 (Springer-Verlag, Berlin, Germany), volume 105 of Springer Proceedings in Physics, pp. 121 – 125. → p 124.Google Scholar
Pruessner, G., and O., Peters, 2006, Self-organized criticality and absorbing states: lessons from the Ising model, Phys. Rev.E 73(2), 025106(R) (4 pp), arXiv:cond-mat/0411709. → pp 52, 265, 330, 337–341, 399.Google ScholarPubMed
Pruessner, G., and O., Peters, 2008, Reply to ‘Comment on “self-organized criticality and absorbing states: lessons from the Ising model”’, Phys. Rev.E 77(4), 048102 (2 pp), reply to comment (Alava et al., 2008). → pp 170, 339, 399.Google Scholar
Puhl, H., 1992, On the modelling of real sand piles, PhysicaA 182(3), 295 – 319. → pp 56, 85, 324.Google Scholar
Puhl, H., 1993, Sandpiles on random lattices, PhysicaA 197(1–2), 14 – 22. → p 56.Google Scholar
Quartier, L., B., Andreotti, S., Douady, and A., Daerr, 2000, Dynamics of a grain on a sandpile model, Phys. Rev.E 62(6), 8299–8307. → p 192.Google ScholarPubMed
Ramasco, J. J., J. M., López, and M. A., Rodríguez, 2000, Generic dynamic scaling in kinetic roughening, Phys. Rev. Lett. 84(10), 2199–2202. → pp 313, 314.CrossRefGoogle ScholarPubMed
Ramasco, J. J., J. M., López, and M. A., Rodríguez, 2001, Interface depinning in the absence of an external driving force, Phys. Rev.E 64(6), 066109 (5 pp). → p 300.Google ScholarPubMed
Ramasco, J. J., M. A., Muñoz, and C. A. da Silva, Santos, 2004, Numerical study of the Langevin theory for fixed-energy sandpiles, Phys. Rev.E 69(4), 045105(R) (4 pp). → pp 177, 182, 183, 333, 340.Google ScholarPubMed
Ramos, O., E., Altshuler, and K. J., Måløy, 2009, Avalanche prediction in a self-organized pile of beads, Phys. Rev. Lett. 102(7), 078701 (4 pp). → pp 67, 134.CrossRefGoogle Scholar
Raup, D. M., 1976, Species diversity in the Phanerozoic; a tabulation, Paleobiology 2(4), 279–288. → p 68.Google Scholar
Raup, D. M., 1986, Biological extinction in earth history, Science 231(4745), 1528–1533. → pp 68, 69.CrossRefGoogle ScholarPubMed
Raup, D. M., 1991, A kill curve for Phanerozoic marine species, Paleobiology 17(1), 37–48. → p 69.CrossRefGoogle ScholarPubMed
Raup, D. M., and G. E., Boyajian, 1988, Patterns of generic extinction in the fossil record, Paleobiology 14(2), 109–125. → p 68.CrossRefGoogle ScholarPubMed
Raup, D. M., and J. J., Sepkoski Jr., 1984, Periodicity of extinctions in the geologic past, Proc. Natl. Acad. Sci. USA 81(3), 801–805. → p 68.CrossRefGoogle ScholarPubMed
Ray, T. S., and N., Jan, 1994, Anomalous approach to the self-organized critical state in a model for ‘life at the edge of chaos’, Phys. Rev. Lett. 72(25), 4045–4048. → pp 145, 155, 319.CrossRefGoogle Scholar
Redner, S., 2001, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, UK). → pp 243, 256.CrossRefGoogle Scholar
Reed, W. J., and K. S., McKelvey, 2002, Power-law behaviour and parametric models for the size-distribution of forest-fires, Ecol. Modell. 150, 239–254. → pp 73, 122.CrossRefGoogle Scholar
Rhodes, C. J., and R. M., Anderson, 1996, Power laws governing epidemics in isolated populations, Nature 381, 600–602. → p 73.CrossRefGoogle ScholarPubMed
Rhodes, C. J., H. J., Jensen, and R. M., Anderson, 1997, On the critical behaviour of simple epidemics, Proc. R. Soc. London, Ser.B 264(1388), 1639–1646. → pp 73, 74.Google ScholarPubMed
Rhodes, T. L., R. A., Moyer, R., Groebner, E. J., Doyle, R., Lehmer, W. A., Peebles, and C. L., Rettig, 1999, Experimental evidence for self-organized criticality in tokamak plasma turbulence, Phys. Lett.A 253(3–4), 181 – 186. → p 72.CrossRefGoogle Scholar
Ricotta, C., M., Arianoutsou, R., Díaz-Delgado, B., Duguy, F., Lloret, E., Maroudi, S., Mazzoleni, J. M., Moreno, S., Rambal, R., Vallejo, and A., Vázquez, 2001, Self-organized criticality of wildfires ecologically revisited, Ecol. Modell. 141, 307–311. → p 73.CrossRefGoogle Scholar
Ricotta, C., G., Avena, and M., Marchetti, 1999, The flaming sandpile: self-organized criticality and wildfires, Ecol. Modell. 119, 73–77. → p 73.CrossRefGoogle Scholar
Riste, T., and D., Sherrington (editors), 1991, Spontaneous Formation of Space-Time Structures and Criticality (Kluwer, Dordrecht, The Netherlands), NATO Advanced Study Institute on Spontaneous Formation of Space-Time Structures and Criticality, Geilo, Norway, April 2–12, 1991. → p 6.CrossRef
Rittel, R., 2000, Selbstorganisierte Kritikalität auf der Ebene von Quarks und Gluonen und deren Manifestation in inelastisch diffraktiven hochenergetischen Streuprozessen, Ph.D. Thesis, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany. → p 252.Google Scholar
Roberts, D. C., and D. L., Turcotte, 1998, Fractality and self-organized criticality of wars, Fractals 6(4), 351–357. → p 76.CrossRefGoogle Scholar
Roering, J. J., J. W., Kirchner, L. S., Sklar, and W. E., Dietrich, 2001, Hillslope evolution by nonlinear creep and landsliding: an experimental study, Geology 29(2), 143–146, comment (van Milligen and Pons, 2002). → p 454.2.0.CO;2>CrossRefGoogle Scholar
Roering, J. J., J. W., Kirchner, L. S., Sklar, and W. E., Dietrich, 2002, Hillslope evolution by nonlinear creep and landsliding: an experimental study: comment and reply: reply, Geology 30(5), 482, reply to comment (van Milligen and Pons, 2002). → p 454.2.0.CO;2>CrossRefGoogle Scholar
Roland, C., and M., Grant, 1989, Lack of self-averaging, multiscaling, and 1/f noise in the kinetics of domain growth, Phys. Rev. Lett. 63(5), 551–554. → p 318.CrossRefGoogle ScholarPubMed
Rolla, L. T., and V., Sidoravicius, 2009, Absorbing-state phase transition for stochastic sandpiles and activated random walks, arXiv:0908.1152v1 (unpublished). → p 330.
Rosendahl, J., M., Vekić, and J., Kelley, 1993, Persistent self-organization of sandpiles, Phys. Rev.E 47(2), 1401–1404. → pp 56, 57.Google ScholarPubMed
Rosendahl, J., M., Vekić, and J. E., Rutledge, 1994, Predictability of large avalanches on a sandpile, Phys. Rev. Lett. 73(4), 537–540. → p 57.CrossRefGoogle ScholarPubMed
Rossi, M., R., Pastor-Satorras, and A., Vespignani, 2000, Universality class of absorbing phase transitions with a conserved field, Phys. Rev. Lett. 85(9), 1803–1806. → pp 170, 171, 177, 178–180, 330, 333.CrossRefGoogle ScholarPubMed
Roux, S., and A., Hansen, 1994, Interface roughening and pinning, J. Phys. I (France) 4, 515–538. → pp 178, 299, 314.CrossRefGoogle Scholar
Royer, S., and D., Pare, 2003, Conservation of total synaptic weight through balanced synaptic depression and potentiation, Nature 422(6931), 518–522. → p 71.CrossRefGoogle ScholarPubMed
Rubio, M. A., C. A., Edwards, A., Dougherty, and J. P., Gollub, 1989, Self-affine fractal interfaces from immiscible displacement in porous media, Phys. Rev. Lett. 63(16), 1685–1688. → p 301.CrossRefGoogle ScholarPubMed
Rudnick, J., and G., Gaspari, 2004, Elements of the Random Walk (Cambridge University Press, Cambridge, UK). → p 243.CrossRefGoogle Scholar
Ruelle, P., 2002, A c = –2 boundary changing operator for the Abelian sandpile model, Phys. Lett.B 539(1), 172–177, arXiv:hep-th/0203105. → p 99.CrossRefGoogle Scholar
Ruelle, P., and S., Sen, 1992, Toppling distributions in one-dimensional Abelian sandpiles, J. Phys. A: Math. Gen. 25(22), L1257–L1264. → pp 87, 92–94, 174, 202.CrossRefGoogle Scholar
Saberi, A. A., S., Moghimi-Araghi, H., Dashti-Naserabadi, and S., Rouhani, 2009, Direct evidence for conformal invariance of avalanche frontiers in sandpile models, Phys. Rev.E 79(3), 031121 (5 pp). → p 99.Google ScholarPubMed
Sadhu, T., and D., Dhar, 2008, Emergence of quasiunits in the one-dimensional Zhang model, Phys. Rev.E 77(3), 031122 (6 pp). → p 109.Google ScholarPubMed
Sadhu, T., and D., Dhar, 2009, Steady state of stochastic sandpile models, J. Stat. Phys. 134(3), 427–441. → pp 173, 202.CrossRefGoogle Scholar
Salas, J., and A. D., Sokal, 2000, Universal amplitude ratios in the critical two-dimensional Ising model on a torus, J. Stat. Phys. 98(3–4), 551–588, arXiv:cond-mat/9904038v2. → pp 20, 39.CrossRefGoogle Scholar
Saleur, H., and B., Duplantier, 1987, Exact determination of the percolation hull exponent in two dimensions, Phys. Rev. Lett. 58(22), 2325–2328. → p 319.CrossRefGoogle ScholarPubMed
Sanchez, R., D. E., Newman, and B. A., Carreras, 2001, Mixed SOC diffusive dynamics as a paradigm for transport in fusion devices, Nucl. Fusion 41(3), 247–256. → pp 72, 193.CrossRefGoogle Scholar
Sánchez, R., D. E., Newman, and B. A., Carreras, 2002, Waiting-time statistics of self-organized-criticality systems, Phys. Rev. Lett. 88(6), 068302 (4 pp). → p 76.CrossRefGoogle ScholarPubMed
Sapoval, B., M., Rosso, and J. F., Gouyet, 1985, The fractal nature of a diffusion front and the relation to percolation, J. Phys. (Paris) Lett. 46(4), 149–156. → p 320.CrossRefGoogle Scholar
Sarkar, A., and P., Barat, 2006, Analysis of rainfall records in India: self-organized criticality and scaling, Fractals 14(4), 289–293, arXiv:physics/0512197. → p 71.CrossRefGoogle Scholar
Scheidegger, A. E., 1967, A stochastic model for drainage patterns into an intramontane trench, Bull. Int. Assoc. Sci. Hydrol. 12, 15–20. → p 102.CrossRefGoogle Scholar
Scheinkman, J. A., and M., Woodford, 1994, Self-organized criticality and economic fluctuations, Am. Econ. Rev. 84(2), 417–421. → p 75.Google Scholar
Schenk, K., B., Drossel, S., Clar, and F., Schwabl, 2000, Finite-size effects in the self-organized critical forest-fire model, Eur. Phys. J.B 15(1), 177–185, arXiv:cond-mat/9904356. → pp 116, 123.CrossRefGoogle Scholar
Schenk, K., B., Drossel, and F., Schwabl, 2002, Self-organized critical forest-fire model on large scales, Phys. Rev.E 65(2), 026135 (8 pp), arXiv:cond-mat/0105121. → pp 116, 120–122.Google ScholarPubMed
Schick, K. L., and A. A., Verveen, 1974, 1/f noise with a low frequency white noise limit, Nature 251(5476), 599–601. → pp 53, 85.CrossRefGoogle Scholar
Schildt, H., 2000, C: The Complete Reference (McGraw-Hill, Berkeley, CA, USA), 4th edition. → pp 359, 380.Google Scholar
Schmittmann, B., G., Pruessner, and H.-K., Janssen, 2006, Strongly anisotropic roughness in surfaces driven by an oblique particle flux, Phys. Rev.E 73(5), 051603 (10 pp), arXiv:cond-mat/0604363. → pp 318, 329.Google ScholarPubMed
Schmittmann, B., and R. K. P., Zia, 1995, Statistical mechanics of driven diffusive systems, in Phase Transitions and Critical Phenomena, edited by C., Domb and J. L., Lebowitz (Academic Press, New York, NY, USA), volume 17, pp. 1–220. → pp 266, 293, 301, 303, 321, 324, 325, 334.Google Scholar
Scholz, C. H., 1991, Earthquakes and faulting: self-organized critical phenomena with a characteristic dimension, in Spontaneous Formation of Space-Time Structures and Criticality, edited by T., Riste and D., Sherrington (Kluwer, Dordrecht, The Netherlands), pp. 41–56, NATO Advanced Study Institute on Spontaneous Formation of Space-Time Structures and Criticality, Geilo, Norway, April 2–12, 1991. → p 66.Google Scholar
Schotte, K. D., 1999, personal communication. → p 251.
Schwoll, H., 2004, (Danfoss), personal communication. → p 22.
Sedgewick, R., 1990, Algorithms in C (Addison-Wesley, Reading, MA, USA). → p 358.Google Scholar
Segev, R., M., Benveniste, E., Hulata, N., Cohen, A., Palevski, E., Kapon, Y., Shapira, and E., Ben-Jacob, 2002, Long term behavior of lithographically prepared in vitro neuronal networks, Phys. Rev. Lett. 88(11), 118102 (4 pp). → p 70.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., 1982, A compendium of fossil marine families, Milwaukee Public Museum Contrib. Biol. Geol. 51, 1–125. → pp 68, 69.Google Scholar
Sepkoski, J. J. Jr., 1993, Ten years in the library: new data confirm paleontological patterns, Paleobiology 19(1), 43–51. → pp 68, 158.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., 2002, A compendium of fossil marine animal genera, Bull. Am. Paleo. 363, 1–560, published posthumously, edited by D., Jablonski and M., Foote. → p 68.Google Scholar
Sethna, J. P., K., Dahmen, S., Kartha, J. A., Krumhansl, B. W., Roberts, and J. D., Shore, 1993, Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations, Phys. Rev. Lett. 70(21), 3347–3350. → p 63.CrossRefGoogle ScholarPubMed
Sethna, J. P., K. A., Dahmen, and C. R., Myers, 2001, Crackling noise, Nature 410(6825), 242–250. → p 62.CrossRefGoogle ScholarPubMed
Shi, K., and C.-Q., Liu, 2009, Self-organized criticality of air pollution, Atmos. Environ. 43(21), 3301–3304. → p 71.CrossRefGoogle Scholar
Shilo, Y., and O., Biham, 2003, Sandpile models and random walkers on finite lattices, Phys. Rev.E 67(6), 066102 (8 pp). → pp 198, 245, 246, 249.Google ScholarPubMed
Shlesinger, M. F., and B. J., West, 1991, Complex fractal dimension of the bronchial tree, Phys. Rev. Lett. 67(15), 2106–2108. → p 74.CrossRefGoogle Scholar
Slanina, F., 2002, Self-organized branching process for a one-dimensional rice-pile model, Eur. Phys. J.B 25(2), 209–216. → pp 199, 257.CrossRefGoogle Scholar
Smethurst, D. P., and H. C., Williams, 2001, Power laws: are hospital waiting lists self-regulating?, Nature 410(6829), 652–653. → pp 75, 401, 406.CrossRefGoogle ScholarPubMed
Sneppen, K., 1992, Self-organized pinning and interface growth in a random medium, Phys. Rev. Lett. 69(24), 3539–3542, comment (Tang and Leschhorn, 1993). → pp 142, 149, 182, 294, 295, 299, 301, 321, 452, 485.CrossRefGoogle Scholar
Sneppen, K., 1995a, Extremal dynamics and punctuated co-evolution, PhysicaA 221(1–3), 168–179. → pp 144, 149.Google Scholar
Sneppen, K., 1995b, Minimal SOC: intermittency in growth and evolution, in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, edited by A., McKane, M., Droz, J., Vannimenus, and D., Wolf (Plenum Press, New York, NY, USA), pp. 295–302, NATO Advanced Study Institute on Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, Cambridge, UK, June 20–30, 1994. → pp 149, 151.Google Scholar
Sneppen, K., P., Bak, H., Flyvbjerg, and M. H., Jensen, 1995, Evolution as a self-organized critical phenomenon, Proc. Natl. Acad. Sci. USA 92(11), 5209–5213. → pp 69, 158.CrossRefGoogle ScholarPubMed
Sneppen, K., and M. H., Jensen, 1993, Sneppen and Jensen reply, Phys. Rev. Lett. 70(24), 3833, reply to comment (Tang and Leschhorn, 1993). → pp 142, 151, 452.CrossRefGoogle ScholarPubMed
Sneppen, K., and M. E. J., Newman, 1997, Coherent noise, scale invariance and intermittency in large systems, PhysicaD 110(3–4), 209–222. → pp 81, 485.Google Scholar
Socolar, J. E. S., G., Grinstein, and C., Jayaprakash, 1993, On self-organized criticality in nonconserving systems, Phys. Rev.E 47(4), 2366–2376. → pp 133, 134, 266, 293, 298, 305, 319, 321, 322, 328, 329.Google ScholarPubMed
Solé, R. V., and J., Bascompte, 1996, Are critical phenomena relevant to large-scale evolution?, Proc. R. Soc. London, Ser.B 263(1367), 161–168. → pp 69, 158, 159.Google ScholarPubMed
Solé, R. V., and S. C., Manrubia, 1995, Self-similarity in rain forests: evidence for a critical state, Phys. Rev.E 51(6), 6250–6253. → p 74.Google Scholar
Solé, R. V., S. C., Manrubia, M., Benton, and P., Bak, 1997, Self-similarity of extinction statistics in the fossil record, Nature 388(6644), 764–767. → p 69.CrossRefGoogle Scholar
Soler, J. M., 1982, Alternative exact method for random walks on finite and periodic lattices with traps, Phys. Rev.B 26(2), 1067–1070. → p 249.CrossRefGoogle Scholar
Solomon, T. H., E. R., Weeks, and H. L., Swinney, 1994, Chaotic advection in a two-dimensional flow: Lévy flights and anomalous diffusion, PhysicaD 76(1–3), 70–84. → p 72.Google Scholar
Somfai, E., A., Czirok, and T., Vicsek, 1994, Power-law distribution of landslides in an experiment on the erosion of a granular pile, J. Phys. A: Math. Gen. 27(20), L757–L763. → p 56.CrossRefGoogle Scholar
Song, W., F., Weicheng, W., Binghong, and Z., Jianjun, 2001, Self-organized criticality of forest fire in China, Ecol. Modell. 145, 61–68. → p 73.CrossRefGoogle Scholar
Sornette, A., and D., Sornette, 1989, Self-organized criticality and earthquakes, Europhys. Lett. 9(3), 197–202. → p 66.CrossRefGoogle Scholar
Sornette, D., 1991, Self-organized criticality in plate tectonics, in Spontaneous Formation of Space-Time Structures and Criticality, edited by T., Riste and D., Sherrington (Kluwer, Dordrecht, The Netherlands), pp. 57–106, NATO Advanced Study Institute on Spontaneous Formation of Space-Time Structures and Criticality, Geilo, Norway, April 2–12, 1991. → pp 66, 139.Google Scholar
Sornette, D., 1992, Critical phase transitions made self-organized: a dynamical system feedback mechanism for self-organized criticality, J. Phys. I (France) 3, 2065–2073. → p 330.Google Scholar
Sornette, D., 1994, Sweeping of an instability: an alternative to self-organized criticality to get powerlaws without parameter tuning, J. Phys. I (France) 4, 209–221. → pp 7, 11, 71, 330, 332, 342.CrossRefGoogle Scholar
Sornette, D., 2002, Mechanism for powerlaws without self-orgnization, Int. J. Mod. Phys.C 13(2), 133–136, arXiv:cond-mat/0110426. → pp 76, 342.CrossRefGoogle Scholar
Sornette, D., 2006, Critical Phenomena in Natural Sciences (Springer-Verlag, Berlin, Germany), 2nd edition. → pp 6, 317, 330, 342, 344.Google Scholar
Sornette, D., and J. V., Andersen, 1998, Scaling with respect to disorder in time-to-failure, Eur. Phys. J.B 1(3), 353–357. → p 65.CrossRefGoogle Scholar
Sornette, D., and I., Dornic, 1996, Parallel Bak-Sneppen model and directed percolation, Phys. Rev.E 54(4), 3334–3338. → pp 150, 156, 296, 320.Google ScholarPubMed
Sornette, D., A., Johansen, and I., Dornic, 1995, Mapping self-organized criticality onto criticality, J. Phys. I (France) 5, 325–335. → pp 301, 320, 321, 330.CrossRefGoogle Scholar
Sornette, D., and M. J., Werner, 2009, Seismicity, statistical physics approaches to, in Encyclopedia of Complexity and Systems Science, edited by R. A., Meyers (Springer-Verlag, New York, NY, USA), volume 9, pp. 7872–7891, arXiv:0803.3756v2. → pp 67, 68, 139.Google Scholar
Spasojević, D., S., Bukvić, S., Milošević, and H. E., Stanley, 1996, Barkhausen noise: elementary signals, power laws, and scaling relations, Phys. Rev.E 54(3), 2531–2546. → p 63.Google ScholarPubMed
Speer, E. R., 1993, Asymmetric Abelian sandpile models, J. Stat. Phys. 71(1/2), 61–76. → p 95.CrossRefGoogle Scholar
Spitzer, F., 2001, Principles of Random Walk (Springer-Verlag, Berlin, Germany). → pp 246, 249.Google Scholar
Stanley, H. E., 1971, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, NY, USA). → pp 3, 23, 25, 318, 348.Google Scholar
Stanley, H. E., L. A. N., Amaral, S. V., Buldyrev, A. L., Goldberger, S., Havlin, B. T., Hyman, H., Leschhorn, P., Maass, H. A., Makse, C. K., Peng, M. A., Salinger, M. H. R., Stanley, and G. M., Viswanathan, 1996, Scaling and universality in living systems, Fractals 4(3), 427–451. → p 53.CrossRefGoogle Scholar
Stanley, H. E., L. A. N., Amaral, P., Gopikrishnan, V., Plerou, and M. A., Salinger, 2002, Scale invariance and universality in economic phenomena, J. Phys.: Condens. Matter 14(9), 2121–2131. → p 75.Google Scholar
Stanley, H. E., P. J., Reynolds, S., Redner, and F., Family, 1982, Position-space renormalization group for models of linear polymers, in Real-Space Renormalization, edited by T. W., Burkhardt and J. M. J., van Leeuwen (Springer-Verlag, Berlin, Germany), Topics in Current Physics, pp. 169–206. → p 113.Google Scholar
Stanley, R. P., 1999, Enumerative Combinatorics, Volume II, number 62 in Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, UK). → pp 252, 253.CrossRefGoogle Scholar
Stapleton, M. A., 2007, Self-Organised Criticality and Non-Equilibrium Statistical Mechanics, Ph.D. Thesis, Imperial Collage London, UK, accessed 12 May 2007, URL http://www.matthewstapleton.com/thesis.pdf. → pp 100, 172, 178, 184, 187, 188, 190, 198, 229, 247–249, 261, 451.Google Scholar
Stapleton, M., and K., Christensen, 2005, Universality class of one-dimensional directed sandpile models, Phys. Rev.E 72(6), 066103 (4 pp). → pp 206, 208, 249, 289.Google ScholarPubMed
Stapleton, M. A., and K., Christensen, 2006, One-dimensional directed sandpile models and the area under a Brownian curve, J. Phys. A: Math. Gen. 39(29), 9107–9126, table B1 seems to contain typos (Stapleton, 2007). → pp 206, 208, 223, 228, 232, 249, 271.CrossRefGoogle Scholar
Stapleton, M., M., Dingler, and K., Christensen, 2004, Sensitivity to initial conditions in self-organized critical systems, J. Stat. Phys. 117(5/6), 891–900. → pp 17, 270, 319.CrossRefGoogle Scholar
Stassinopoulos, D., and P., Bak, 1995, Democratic reinforcement: a principle for brain function, Phys. Rev.E 51(5), 5033–5039. → p 71.Google ScholarPubMed
Stauffer, D., and A., Aharony, 1994, Introduction to Percolation Theory (Taylor & Francis, London, UK). → pp 12, 103, 112, 121, 124.Google Scholar
Stella, A. L., and M. De, Menech, 2001, Mechanisms of avalanche dynamics and forms of scaling in sandpiles, PhysicaA 295(1–2), 101–107. → pp 103, 165.Google Scholar
Stevens, W. R., and S. A., Rago, 2005, Advanced Programming in the UNIX® Environment (Addison-Wesley, Reading, MA, USA), 2nd edition. → pp 358, 371, 372.Google Scholar
Stierstadt, K., and W., Boeckh, 1965, Die Temperaturabhängigkeit des magnetischen Barkhauseneffekts, Z. Phys. 186(2), 154–167. → p 62.CrossRefGoogle Scholar
Stilck, J. F., R., Dickman, and R., Vidigal, 2004, Series expansion for a stochastic sandpile, J. Phys. A: Math. Gen. 37(4), 1145–1157, arXiv:cond-mat/0306214. → p 173.CrossRefGoogle Scholar
Strogatz, S. H., 1994, Nonlinear Dynamics and Chaos (Physica B, Cambridge, MA, USA). → p 260.Google Scholar
Suki, B., A.-L., Barabasi, Z., Hantos, F., Petak, and H. E., Stanley, 1994, Avalanches and power-law behaviour in lung inflation, Nature 368(6472), 615–618. → p 74.CrossRefGoogle ScholarPubMed
Surdeanu, R., R. J., Wijngaarden, E., Visser, J. M., Huijbregtse, J. H., Rector, B., Dam, and R., Griessen, 1999, Kinetic roughening of penetrating flux fronts in high-Tc thin film superconductors, Phys. Rev. Lett. 83(10), 2054–2057. → p 61.CrossRefGoogle Scholar
Suzuki, M., and M., Katori, 1986, New method to study critical phenomena – mean-field finite-size scaling theory, J. Phys. Soc. Jpn. 55(1), 1–4. → p 182.CrossRefGoogle Scholar
Suzuki, M., M., Katori, and X., Hu, 1987, Coherent anomaly method in critical phenomena. I., J. Phys. Soc. Jpn. 56(9), 3092–3112, first of five parts. → p 182.Google Scholar
Swendsen, R. H., and J.-S., Wang, 1987, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58(2), 86–88. → p 357.CrossRefGoogle ScholarPubMed
Syozi, I., 1972, Transformation of Ising models, in Phase Transitions and Critical Phenomena, edited by C., Domb and M. S., Green (Academic Press, London, UK), volume 2, pp. 269–329. → p 23.Google Scholar
Szabó, G., M., Alava, and J., Kertesz, 2002, Self-organized criticality in the Kardar-Parisi-Zhang equation, Europhys. Lett. 57(5), 665–671. → p 300.CrossRefGoogle Scholar
Tabelow, K., 2001, Gap function in the finite Bak-Sneppen model, Phys. Rev.E 63(4), 047101 (3 pp). → p 144–146.Google ScholarPubMed
Tadić, B., 1999, Time distribution and loss of scaling in granular flow, Eur. Phys. J.B 7(4), 619–625. → p 135.CrossRefGoogle Scholar
Tadić, B., and D., Dhar, 1997, Emergent spatial structures in critical sandpiles, Phys. Rev. Lett. 79(8), 1519–1522. → pp 171, 290, 295–298.CrossRefGoogle Scholar
Tadić, B., U., Nowak, K. D., Usadel, R., Ramaswamy, and S., Padlewski, 1992, Scaling behavior in disordered sandpile automata, Phys. Rev.A 45(12), 8536–8545. → p 287.CrossRefGoogle ScholarPubMed
Takayasu, H., 1989, Steady-state distribution of generalized aggregation system with injection, Phys. Rev. Lett. 63(23), 2563–2565. → p 102.CrossRefGoogle ScholarPubMed
Takayasu, H., and M., Matsuzaki, 1988, Dynamical phase transition in threshold elements, Phys. Lett.A 131, 244–247. → p 125.CrossRefGoogle Scholar
Tang, C., 1993, SOC and the Bean critical state, PhysicaA 194(1–4), 315 – 320. → p 59.Google Scholar
Tang, C., and P., Bak, 1988a, Critical exponents and scaling relations for self-organized critical phenomena, Phys. Rev. Lett. 60(23), 2347–2350. → pp 59, 92, 171, 194, 299, 330–332.CrossRefGoogle ScholarPubMed
Tang, C., and P., Bak, 1988b, Mean field theory of self-organized critical phenomena, J. Stat. Phys. 51(5/6), 797–802. → pp 5, 92, 251, 330.CrossRefGoogle Scholar
Tang, L.-H., M., Kardar, and D., Dhar, 1995, Driven depinning in anisotropic media, Phys. Rev. Lett. 74(6), 920–923. → p 207.CrossRefGoogle ScholarPubMed
Tang, L.-H., and H., Leschhorn, 1992, Pinning by directed percolation, Phys. Rev.A 45(12), R8309–R8312. → p 294.CrossRefGoogle ScholarPubMed
Tang, L.-H., and H., Leschhorn, 1993, Self-organized interface depinning, Phys. Rev. Lett. 70(24), 3832, comment on (Sneppen, 1992), reply (Sneppen and Jensen, 1993). → pp 142, 295, 299, 449.CrossRefGoogle ScholarPubMed
Täuber, U. C., 2005, Critical dynamics, preprint available at http://www.phys.vt.edu/~tauber/utaeuber.html, accessed 11 February 2010 (unpublished). → pp 177, 267, 300, 319, 324.
Täuber, U. C., M., Howard, and B. P., Vollmayr-Lee, 2005, Applications of field-theoretic renormalization group methods to reaction-diffusion problems, J. Phys. A: Math. Gen. 38(17), R79–R131. → pp 154, 266.CrossRefGoogle Scholar
Täuber, U. C., and F., Schwabl, 1992, Critical dynamics of the O(n)-symmetric relaxational models below the transition temperature, Phys. Rev.B 46(6), 3337–3361. → p 343.CrossRefGoogle ScholarPubMed
Tebaldi, C., M. De, Menech, and A. L., Stella, 1999, Multifractal scaling in the Bak-Tang-Wiesenfeld sandpile and edge events, Phys. Rev. Lett. 83(19), 3952–3955, arXiv:cond-mat/9903270. → pp 50, 103, 220.CrossRefGoogle Scholar
Teich, M. C., C., Heneghan, S. B., Lowen, T., Ozaki, and E., Kaplan, 1997, Fractal character of the neural spike train in the visual system of the cat, J. Opt. Soc. Am.A 14(3), 529 – 546. → p 70.CrossRefGoogle ScholarPubMed
Theiler, J., 1993, Scaling behavior of a directed sandpile automata with random defects, Phys. Rev.E 47(1), 733–734. → p 288.Google ScholarPubMed
Toib, A., V., Lyakhov, and S., Marom, 1998, Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels, J. Neurosci. 18(5), 1893–1903. → p 70.CrossRefGoogle ScholarPubMed
Toner, J., 1991, Dirt roughens real sandpiles, Phys. Rev. Lett. 66(6), 679–682. → pp 56, 207.CrossRefGoogle ScholarPubMed
Tononi, G., and G. M., Edelman, 1998, Consciousness and complexity, Science 282(5395), 1846–1851. → p 71.CrossRefGoogle ScholarPubMed
Torcini, A., R., Livi, A., Politi, and S., Ruffo, 1997, Comment on ‘universal scaling law for the largest lyapunov exponent in coupled map lattices’, Phys. Rev. Lett. 78(7), 1391, comment on (Yang, Ding, and Ding, 1996), reply (Loreto et al., 1997). → pp 431, 457.CrossRefGoogle Scholar
Torvund, F., and J., Frøyland, 1995, Strong ordering by non-uniformity of thresholds in a coupled map lattice, Phys. Scripta 52, 624–627. → pp 129, 134, 139, 365.CrossRefGoogle Scholar
Tracy, C. A., and H., Widom, 2007, Nonintersecting Brownian excursions, Ann. Appl. Probab. 17(3), 953–979. → p 249.CrossRefGoogle Scholar
Tsuchiya, T., and M., Katori, 1999a, Effect of anisotropy on the self-organized critical states of Abelian sandpile models, PhysicaA 266(1–4), 358–361, Proceedings of the International Conference on Percolation and Disordered Systems – Theory and Applications, Giessen, Germany, July 14 – 17, 1998, see Tsuchiya and Katori (1999b). → p 290.Google Scholar
Tsuchiya, T., and M., Katori, 1999b, Exact results for the directed Abelian sandpile models, J. Phys. A: Math. Gen. 32(9), 1629–1641. → pp 290, 453.CrossRefGoogle Scholar
Tsuchiya, T., and M., Katori, 2000, Proof of breaking of self-organized criticality in a nonconservative Abelian sandpile model, Phys. Rev.E 61(2), 1183–1188. → p 88.Google Scholar
Tullis, T. E., and J. D., Weeks, 1986, Constitutive behavior and stability of frictional sliding of granite, Pure Appl. Geophys. 124(3), 383–414. → p 65.CrossRefGoogle Scholar
Turcotte, D. L., 1993, Fractals and Chaos in Geology and Geophysics (Cambridge University Press, Cambridge, UK). → p 66.Google Scholar
Turcotte, D. L., 1999, Self-organized criticality, Rep. Prog. Phys. 62, 1377–1426. → pp 53, 112.CrossRefGoogle Scholar
Tuszyński, J. A., M., Otwinowski, and J. M., Dixon, 1991, Spiral-pattern formation and multistability in Landau-Ginzburg systems, Phys. Rev.B 44(17), 9201–9213. → p 114.CrossRefGoogle ScholarPubMed
Urbach, J. S., R. C., Madison, and J. T., Markert, 1995, Interface depinning, self-organized criticality, and the Barkhausen effect, Phys. Rev. Lett. 75(2), 276–279. → pp 62, 63.CrossRefGoogle ScholarPubMed
Uritsky, V. M., M., Paczuski, J. M., Davila, and S. I., Jones, 2007, Coexistence of self-organized criticality and intermittent turbulence in the solar corona, Phys. Rev. Lett. 99(2), 025001 (4 pp). → p 72.CrossRefGoogle ScholarPubMed
Utsu, T., 1961, A statistical study on the occurrence of aftershocks, Geophys. Mag. 30, 521–605. → p 67.Google Scholar
Utsu, T., Y., Ogata, and R. S., Matsu'ura, 1995, The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1–33. → p 67.CrossRefGoogle Scholar
Vallette, D. P., and J. P., Gollub, 1993, Spatiotemporal dynamics due to stick-slip friction in an elastic-membrane system, Phys. Rev.E 47(2), 820–827. → p 65.Google Scholar
van der Linden, P., 1994, Expert C Programming (Sunsoft Press, A Prentice Hall Title, Mountain View, CA, USA). → pp 358, 359.Google Scholar
van der Ziel, A., 1950, On the noise spectra of semi-conductor noise and of flicker effect, Physica 16(4), 359–372. → p 16.CrossRefGoogle Scholar
van Kampen, N. G., 1992, Stochastic Processes in Physics and Chemistry (Elsevier Science, Amsterdam, The Netherlands), 3rd impression 2001, enlarged and revised. → pp 201, 212, 330.Google Scholar
van Milligen, B. P., and P. D., Pons, 2002, Hillslope evolution by nonlinear creep and lands-liding: an experimental study: comment and Reply: comment, Geology 30(5), 481–482, comment on (Roering, Kirchner, Sklar, and Dietrich, 2001), reply (Roering, Kirchner, Sklar, and Dietrich, 2002). → pp 193, 447.2.0.CO;2>CrossRefGoogle Scholar
van Wijland, F., 2002, Universality class of nonequilibrium phase transitions with infinitely many absorbing states, Phys. Rev. Lett. 89(19), 190602 (4 pp). → p 179.CrossRefGoogle ScholarPubMed
van Wijland, F., K., Oerding, and H. J., Hilhorst, 1998, Wilson renormalization of a reaction–diffusion process, PhysicaA 251(1–2), 179–201. → p 177.Google Scholar
Vasil'ev, A. N., 2004, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Chapman and Hall, Boca Raton, FL, USA). → p 267.CrossRefGoogle Scholar
Vattay, G., and A., Harnos, 1994, Scaling behavior in daily air humidity fluctuations, Phys. Rev. Lett. 73(5), 768–771. → p 71.CrossRefGoogle ScholarPubMed
Vázquez, A., 2000, Nonconservative Abelian sandpile model with the Bak-Tang-Wiesenfeld toppling rule, Phys. Rev.E 62(6), 7797–7801. → p 88.Google ScholarPubMed
Vázquez, A., and O., Sotolongo-Costa, 1999, Self-organized criticality and directed percolation, J. Phys. A: Math. Gen. 32(14), 2633–2644. → p 296.CrossRefGoogle Scholar
Vázquez, A., and O., Sotolongo-Costa, 2000, Universality classes in the random-storage sandpile model, Phys. Rev.E 61(1), 944–947. → p 296.Google ScholarPubMed
Vere-Jones, D., 1976, A branching model for crack propagation, Pure Appl. Geophys. 114(4), 711–725. → p 66.CrossRefGoogle Scholar
Vere-Jones, D., 1977, Statistical theories of crack propagation, Math. Geol. 9(5), 455–481. → p 66.CrossRefGoogle Scholar
Vergeles, M., A., Maritan, and J. R., Banavar, 1997, Mean-field theory of sandpiles, Phys. Rev.E 55(2), 1998–2000. → pp 92, 104, 106, 251, 257.Google Scholar
Vespignani, A., R., Dickman, M. A., Muñoz, and S., Zapperi, 1998, Driving, conservation and absorbing states in sandpiles, Phys. Rev. Lett. 81(25), 5676–5679, arXiv:cond-mat/9806249v2. → pp 162, 165, 171, 254, 300, 330–333, 335, 339.CrossRefGoogle Scholar
Vespignani, A., R., Dickman, M. A., Muñoz, and S., Zapperi, 2000, Absorbing-state phase tranistions in fixed-energy sandpiles, Phys. Rev.E 62(4), 4564–4582, arXiv:cond-mat/0003285. → pp 100, 162, 171, 178, 179, 182, 299, 300, 307, 330, 331, 333, 337, 340.Google ScholarPubMed
Vespignani, A., and S., Zapperi, 1995, Renormalization approach to the self-organized critical behavior of sandpile models, Phys. Rev.E 51(3), 1711–1724, see Lin and Hu (2002). → pp 92, 101, 121, 165, 168, 182, 267, 268, 334.Google ScholarPubMed
Vespignani, A., and S., Zapperi, 1997, Order parameter and scaling fields in self-organized criticality, Phys. Rev. Lett. 78(25), 4793–4796. → pp 167, 171, 251, 331.CrossRefGoogle Scholar
Vespignani, A., and S., Zapperi, 1998, How self-organized criticality works: a unified mean-field picture, Phys. Rev.E 57(6), 6345–6362. → pp 111, 118, 171, 251, 328, 330, 331, 333–335.Google Scholar
Vespignani, A., S., Zapperi, and V., Loreto, 1996, Renormalization of nonequilibrium systems with critical stationary states, Phys. Rev. Lett. 77(22), 4560–4563. → p 268.CrossRefGoogle ScholarPubMed
Vespignani, A., S., Zapperi, and V., Loreto, 1997, Dynamically driven renormalization group, J. Stat. Phys. 88(1/2), 47–79. → pp 243, 267, 268.CrossRefGoogle Scholar
Vicsek, T., 1999, Fractal Growth Phenomena (World Scientific, Singapore), 2nd edition. → p 301.Google Scholar
Vicsek, T., 2002, Complexity: the bigger picture, Nature 418(6894), 131–131. → p 6.CrossRefGoogle Scholar
Vidigal, R., and R., Dickman, 2005, Asymptotic behavior of the order parameter in a stochastic sandpile, J. Stat. Phys. 118(1/2), 1–25. → p 182.CrossRefGoogle Scholar
Vlasko-Vlasov, V. K., U., Welp, V., Metlushko, and G. W., Crabtree, 2004, Experimental test of the self-organized criticality of vortices in superconductors, Phys. Rev.B 69(14), 140504(R) (4 pp). → pp 60, 61.CrossRefGoogle Scholar
Voigt, C. A., and R. M., Ziff, 1997, Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model, Phys. Rev.E 56(6), R6241–R6244. → p 294.Google Scholar
Voss, R. F., 1992, Evolution of long-range fractal correlations and 1/f noise in DNA base sequences, Phys. Rev. Lett. 68(25), 3805–3808, comment (Buldyrev et al., 1993). → pp 74, 406.CrossRefGoogle ScholarPubMed
Voss, R. F., 1993, Voss replies, Phys. Rev. Lett. 71(11), 1777, reply to comment (Buldyrev et al., 1993). → p 74.CrossRefGoogle ScholarPubMed
Walker, D., 2009, The Self-Organised Branching Process, M.Sc. Thesis, Department of Mathematics, Imperial College London. → p 265.Google Scholar
Walker, D., and G., Pruessner, 2009, The self-organised branching process revisted once more (unpublished). → p 335.
Walsh, C. A., and J. J., Kozak, 1981, Exact algorithm for d-dimensional walks on finite and infinite lattices with traps, Phys. Rev. Lett. 47(21), 1500–1502. → p 249.CrossRefGoogle Scholar
Walsh, C. A., and J. J., Kozak, 1982, Exact algorithm for d-dimensional walks on finite and infinite lattices with traps. II. General formulation and application to diffusion-controlled reactions, Phys. Rev.B 26(8), 4166–4189. → p 249.CrossRefGoogle Scholar
Wang, Z., and D., Shi, 1993, Thermally activated flux avalanches in single crystals of high-Tc superconductors, Phys. Rev.B 48(13), 9782–9787. → pp 59, 60.Google ScholarPubMed
Wannier, G. H., 1987, Statistical Physics (Dover, Mineola, NY, USA), reprint, originally published by John Wiley & Sons, New York, NY, USA, 1966. → p 175.Google Scholar
Wegner, F. J., 1972, Corrections to scaling laws, Phys. Rev.B 5(11), 4529–4536. → pp 30, 39.CrossRefGoogle Scholar
Weichman, P. B., and J., Miller, 2000, Theory of the self-organized critical state in nonequilibrium 4He, J. Low Temp. Phys. 119(1), 155–179. → p 61.CrossRefGoogle Scholar
Weinrib, A., 1984, Long-range correlated percolation, Phys. Rev.B 29(1), 387–395. → p 121.CrossRefGoogle Scholar
Weiss, J., and J.-R., Grasso, 1997, Acoustic emission in single crystals of ice, J. Phys. Chem.B 101(32), 6113–6117. → p 64.CrossRefGoogle Scholar
Weissman, M. B., 1988, 1/f noise and other slow, nonexponential kinetics in condensed matter, Rev. Mod. Phys. 60(2), 537–571. → pp 4, 16.CrossRefGoogle Scholar
Welinder, P., G., Pruessner, and K., Christensen, 2007, Multiscaling in the sequence of areas enclosed by coalescing random walkers, New J. Phys. 9(5), 149 (18 pp). → pp 18, 206, 208, 223, 225, 232, 249, 251, 310, 396.CrossRefGoogle Scholar
Welling, M. S., C. M., Aegerter, and R. J., Wijngaarden, 2003, Structural similarity between the magnetic-flux profile in superconductors and the surface of a 2d rice pile, Europhys. Lett. 61(4), 473–479. → pp 187, 189, 193, 197, 209, 301.CrossRefGoogle Scholar
Welling, M. S., C. M., Aegerter, and R. J., Wijngaarden, 2004, Noise correction for roughening analysis of magnetic flux profiles in YBa2Cu3O7-x, Eur. Phys. J.B 38(1), 93–98. → p 61.CrossRefGoogle Scholar
Welling, M. S., C. M., Aegerter, and R. J., Wijngaarden, 2005, Self-organized criticality induced by quenched disorder: experiments on flux avalanches in NbHx films, Phys. Rev.B 71(10), 104515 (5 pp). → p 61.CrossRefGoogle Scholar
Werner, M. J., and D., Sornette, 2007, Comment on ‘analysis of the spatial distribution between successive earthquakes’, Phys. Rev. Lett. 99(17), 179801, comment on (Davidsen and Paczuski, 2005), reply (Davidsen and Paczuski, 2007). → pp 68, 413.CrossRefGoogle ScholarPubMed
West, G. B., J. H., Brown, and B. J., Enquist, 1997, A general model for the origin of allometric scaling laws in biology, Science 276(5309), 122–126. → p 74.CrossRefGoogle ScholarPubMed
West, G. B., J. H., Brown, and B. J., Enquist, 1999, The fourth dimension of life: fractal geometry and allometric scaling of organisms, Science 284(5420), 1677–1679. → p 74.CrossRefGoogle ScholarPubMed
White, E. P., B. J., Enquist, and J. L., Green, 2008, On estimating the exponent of power-law frequency distributions, Ecology 89(4), 905–912. → p 230.CrossRefGoogle ScholarPubMed
Widom, B., 1965a, Equation of state in the neighborhood of the critical point, J. Chem. Phys. 43(11), 3898–3905. → p 3.CrossRefGoogle Scholar
Widom, B., 1965b, Surface tension and molecular correlations near the critical point, J. Chem. Phys. 43(11), 3892–3897. → p 3.CrossRefGoogle Scholar
Wiese, K. J., 2002, Disordered systems and the functional renormalization group, a pedagogical introduction, Acta Phys. Slovaca 52(4), 341–351, arXiv:cond-mat/0205116. → p 315.Google Scholar
Wiesenfeld, K., J., Theiler, and B., McNamara, 1990, Self-organized criticality in a deterministic automaton, Phys. Rev. Lett. 65(8), 949–952. → pp 96, 97, 134, 279.CrossRefGoogle Scholar
Wijngaarden, R. J., M. S., Welling, C. M., Aegerter, and M., Menghini, 2006, Avalanches and self-organized Criticality in superconductors, Eur. Phys. J.B 50(1), 117–122. → p 61.CrossRefGoogle Scholar
Wikipedia, 2010a, Fast inverse square root – Wikipedia, The Free Encyclopedia, accessed 14 Aug 2010, URL. → p 357.
Wikipedia, 2010b, Long double – Wikipedia, The Free Encyclopedia, accessed 1 Oct 2010, URL. → p 380.
Wilf, H. S., 1994, Generatingfunctionology (Academic Press, London, UK). → p 258.Google Scholar
Wilkinson, D., and J. F., Willemsen, 1983, Invasion percolation: a new form of percolation theory, J. Phys. A: Math. Gen. 16(14), 3365–3376. → pp 295, 301, 320.CrossRefGoogle Scholar
Willinger, W., R., Govindan, S., Jamin, V., Paxson, and S., Shenker, 2002, Scaling phenomena in the Internet: critically examining criticality, Proc. Natl. Acad. Sci. USA 99(Suppl. 1), 2573–2580. → p 76.CrossRefGoogle ScholarPubMed
Winfree, A. T., 1980, The Geometry of Biological Time (Springer-Verlag, Berlin, Germany). → p 135.CrossRefGoogle Scholar
Wissel, F., and B., Drossel, 2005, The Olami-Feder-Christensen earthquake model in one dimension, New J. Phys. 7(1), 5 (19 pp). → p 141.CrossRefGoogle Scholar
Wissel, F., and B., Drossel, 2006, Transient and stationary behavior in the Olami-Feder-Christensen model, Phys. Rev.E 74(6), 066109 (9 pp). → pp 134, 137.Google ScholarPubMed
Witten, T. A., and L. M., Sander, 1981, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19), 1400–1403. → pp 300, 320.CrossRefGoogle Scholar
Woodard, R., D. E., Newman, R., Sánchez, and B. A., Carreras, 2007, Persistent dynamic correlations in self-organized critical systems away from their critical point, PhysicaA 373, 215 – 230. → pp 172, 194, 322.Google Scholar
Worrell, G. A., S. D., Cranstoun, J., Echauz, and B., Litt, 2002, Evidence for self-organized criticality in human epileptic hippocampus, NeuroReport 13(16), 2017–2021. → p 70.CrossRefGoogle ScholarPubMed
Yang, C. B., 2004, The origin of power-law distributions in self-organized criticality, PhysicaA 37(42), L523–L529. → p 251.CrossRefGoogle Scholar
Yang, C. B., and X., Cai, 2001, Fluctuations and finite-size effect in the Bak-Sneppen model, Eur. Phys. J.B 21(1), 109–114. → pp 141, 155.CrossRefGoogle Scholar
Yang, W., E.-J., Ding, and M., Ding, 1996, Universal scaling law for the largest Lyapunov exponent in coupled map lattices, Phys. Rev. Lett. 76(11), 1808–1811, comment (Torcini et al., 1997). → p 453.CrossRefGoogle Scholar
Yeh, W. J., and Y. H., Kao, 1984, Measurements of flux-flow and 1/f noise in superconductors, Phys. Rev. Lett. 53(16), 1590–1593. → p 60.CrossRefGoogle Scholar
Zaitsev, S. I., 1992, Robin Hood as self-organized criticality, PhysicaA 189(3–4), 411–416. → pp 81, 142, 149, 178, 185, 485.Google Scholar
Zapperi, S., C., Castellano, F., Colaiori, and G., Durin, 2005, Signature of effective mass in crackling-noise asymmetry, Nat. Phys. 1(1), 46–49. → p 64.CrossRefGoogle Scholar
Zapperi, S., P., Cizeau, G., Durin, and H. E., Stanley, 1998, Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect, Phys. Rev.B 58(10), 6353–6366. → p 64.CrossRefGoogle Scholar
Zapperi, S., K. B., Lauritsen, and H. E., Stanley, 1995, Self-organized branching processes: mean-field theory for avalanches, Phys. Rev. Lett. 75(22), 4071–4074. → pp 131, 183, 251, 254, 265, 327, 335.CrossRefGoogle ScholarPubMed
Zapperi, S., P., Ray, H. E., Stanley, and A., Vespignani, 1999, Avalanches in breakdown and fracture processes, Phys. Rev.E 59(5), 5049–5057. → p 64.Google ScholarPubMed
Zapperi, S., A., Vespignani, and H. E., Stanley, 1997, Plasticity and avalanche behaviour in microfracturing phenomena, Nature 388(6643), 658–660. → p 65.CrossRefGoogle Scholar
Zhang, D.-M., G.-J., Pan, H.-Z., Sun, Y.-P., Ying, and R., Li, 2005a, Moment analysis of different stochastic directed sandpile model, Phys. Lett.A 337(4–6), 285–291. → pp 107, 284, 288.CrossRefGoogle Scholar
Zhang, D.-M., H.-Z., Sun, Z.-H., Li, G.-J., Pan, B.-M., Yu, R., Li, and Y.-P., Yin, 2005b, Anomalous scaling behaviors in rice-pile model with two different driving mechanisms, Commun. Theor. Phys. 44(1), 99–102, numerics may not be independent from Zhang et al. (2005c). → pp 189, 198, 209, 284, 458.CrossRefGoogle Scholar
Zhang, D.-M., H.-Z., Sun, G.-J., Pan, B.-M., Yu, Y.-P., Yin, F., Sun, R., Li, and X.-Y., Su, 2005c, Moment analysis of a rice-pile model, Commun. Theor. Phys. 43(3), 483–486, numerics may not be independent from Zhang et al. (2005b). → pp 189, 458.Google Scholar
Zhang, S., 1997, On the universality of a one-dimensional model of a rice pile, Phys. Lett.A 233(4–6), 317–322. → pp 178, 188, 189, 193, 194, 196, 198, 209, 284.CrossRefGoogle Scholar
Zhang, S., Z., Huang, and E., Ding, 1996, Predictions of large events on a spring-block model, J. Phys. A: Math. Gen. 29(15), 4445. → p 141.CrossRefGoogle Scholar
Zhang, S.-d., 2000, 1/f a fluctuations in a ricepile model, Phys. Rev.E 61(5), 5983–5986. → pp 15, 186, 206, 284, 314.Google Scholar
Zhang, Y.-C., 1989, Scaling theory of self-organized criticality, Phys. Rev. Lett. 63(5), 470–473. → pp 22, 82, 104–110, 485.CrossRefGoogle ScholarPubMed
Zheng, B., and S., Trimper, 2001, Comment on ‘universal fluctuations in correlated systems’, Phys. Rev. Lett. 87(18), 188901 (1 p), comment on (Bramwell et al., 2000), reply (Bramwell, Christensen, Fortin, et al., 2001). → pp 328, 338, 405.CrossRefGoogle Scholar
Zhu, J., G., Zeng, X., Zhao, G., Huang, and Y., Jiang, 2005, Self-organized critical behavior of acid deposition, Water Air Soil Poll. 162(1), 295–313. → p 71.CrossRefGoogle Scholar
Zieve, R. J., T. F., Rosenbaum, H. M., Jaeger, G. T., Seidler, G. W., Crabtree, and U., Welp, 1996, Vortex avalanches at one thousandth the superconducting transition temperature, Phys. Rev.B 53(17), 11849–11854. → p 60.CrossRefGoogle ScholarPubMed
Ziff, R. M., 1982, The perimeter of percolation clusters as a random walk, J. Stat. Phys. 28(4), 838, announcement of a talk at the 47th Statistical Mechanics Meeting, New Brunswick, NJ, USA, May 13–14, 1982. → p 319.Google Scholar
Ziff, R. M., P. T., Cummings, and G., Stells, 1984, Generation of percolation cluster perimeters by a random walk, J. Phys. A: Math. Gen. 17(15), 3009–3017. → p 319.CrossRefGoogle Scholar
Zinn-Justin, J., 1997, Quantum Field Theory and Critical Phenomena (Oxford University Press, New York, NY, USA), 3rd edition. → pp 266, 323.Google Scholar
Zipf, G. K., 1949, Human Behavior and the Principle of Least Effort (Addison-Wesley, Reading, MA, USA). → pp 53, 76.Google Scholar
Zürcher, U., 1994, Scaling behavior of fluctuations in systems with continuous symmetry, Phys. Rev. Lett. 72(21), 3367–3369. → p 343.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Gunnar Pruessner, Imperial College of Science, Technology and Medicine, London
  • Book: Self-Organised Criticality
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977671.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Gunnar Pruessner, Imperial College of Science, Technology and Medicine, London
  • Book: Self-Organised Criticality
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977671.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Gunnar Pruessner, Imperial College of Science, Technology and Medicine, London
  • Book: Self-Organised Criticality
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977671.016
Available formats
×