Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-26T19:14:13.829Z Has data issue: false hasContentIssue false

7 - ARTHROPOD-BORNE INFECTION

from PART II - LESS COMMON INFECTIONS

Published online by Cambridge University Press:  08 January 2010

John C. Hall
Affiliation:
University of Missouri, Kansas City
Get access

Summary

INTRODUCTION

Arthropod-borne diseases remain a major cause of death and morbidity throughout the world. Malaria alone kills thousands of people every year. Dengue, trypanosomiasis, leishmaniasis, viral encephalitis, and viral hemorrhagic fevers are important public health threats. Modern technology affords us some protection from arthropod-borne disease. Window screens and an indoor life-style results in lower rates of infection in developed countries. During a recent outbreak of dengue fever along the US–Mexican border, the incidence of disease was much lower in Laredo, Texas, than in Nuevo Laredo, Mexico, even though the vector, Aedes aegypti, was more abundant on the Texas side of the border. This demonstrates the magnitude of the effect of screens and indoor living, even when vector-control measures have failed.

In areas where disease activity is endemic rather than episodic, state health departments administer aggressive mosquito control programs. Considerable manpower and equipment are contributed by military reserve units, and recent conflicts have demonstrated that war disrupts vector control efforts at home as well as in the zone of conflict. Disruption of the public health infrastructure in Iraq and Afghanistan as well as the failure to deliver repellent to our troops contributed to the much publicized cases of leishmaniasis among American troops in Iraq.

Mosquito-borne outbreaks of West Nile fever in the United States have also gained national attention. Rocky Mountain spotted fever and equine encephalitis remain the most lethal vector-borne disease in North America, but many other illnesses are commonly transmitted by mosquitoes, flies, ticks, and fleas. Mosquitoes transmit West Nile fever, St. Louis encephalitis, and equine encephalitis.

Type
Chapter
Information
Skin Infections
Diagnosis and Treatment
, pp. 92 - 95
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×