Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T10:49:40.683Z Has data issue: false hasContentIssue false

10 - Application of the PSS Tuning Concepts to a Multi-Machine Power System

Published online by Cambridge University Press:  05 February 2016

M. J. Gibbard
Affiliation:
University of Adelaide
P. Pourbeik
Affiliation:
Electric Power Research Institute, USA
D. J. Vowles
Affiliation:
University of Adelaide
Get access

Summary

Introduction

The previous chapter introduced some important concepts in the tuning of PSSs in multi-machine power systems. The purpose of this chapter is to demonstrate the application of the associated techniques for the analysis and tuning of PSSs in a fourteen-generator power system which, without continuously acting PSSs, is inherently unstable. Each ‘generator’ in this system, in fact, represents a power station which accommodates between one and twelve units; the number of units in-service (nu) depends on the particular operating condition. The units in a power station are assumed to be identical, therefore the rating of the equivalent generator for a station is nu times the rating of a single unit. It is assumed that the individual generators in each power station are fitted with identical excitation systems and PSSs.

In a later chapter a class of stabilizers known as Power Oscillation Dampers (PODs) are discussed; these are stabilizers that can be fitted to power-electronic based transmission devices such as FACTS (e.g. Static Var Compensators) and HVDC transmission. The analysis and tuning of POD stabilizers are demonstrated by means of examples in Chapter 11. In the fourteen-generator power system described in this chapter the Static Var Compensators (SVCs) are fitted with continuously acting voltage regulators controlling bus voltage, but are not fitted with stabilizers.

The steps in the tuning of PSSs of machines in a multi-machine system are explored, commencing with (i) the eigen-analysis of the system with all PSSs out of service, and (ii) the associated analysis based on Mode Shapes and Participation Factors. The PSSs are then tuned using the P-Vr approach discussed in Section 9.4. Having completed the determination of the PSS parameters, the effect on the shifts of eigenvalues associated with the rotor modes are assessed as the damping gains of the PSSs are increased; ideally over the range of operating conditions such shifts are directly to the left in the complex s-plane.

In practice a new power station is built to supply energy to an existing power system in which many of the existing generators may already be fitted with PSSs. The latter PSSs would have been tuned and their parameters set to fixed values. The PSSs in a new power station have to be tuned to satisfy the damping and other performance criteria of the system operators over the range of system operating conditions and contingencies.

Type
Chapter
Information
Publisher: The University of Adelaide Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×