Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T05:29:27.890Z Has data issue: false hasContentIssue false

17 - Molecular and genetic influences on the neural substrate of social cognition in humans

Published online by Cambridge University Press:  05 June 2012

Louise Gallagher
Affiliation:
University of Dublin, Trinity College, Dublin, Ireland
David Skuse
Affiliation:
Institute of Child Health, London, UK
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

Human social behaviour is wonderfully complex, and influenced by manifold effects including genetic, environmental and cultural factors (Chapter 15). Here we focus on one aspect of human social behaviour: social cognition. Human social cognition, or the ability to process social information thus influencing human social behaviour, is a broad and complex concept, as yet not defined unambiguously. The aim of this chapter is to introduce the basic neural processes underlying human social cognition, and the genetic and molecular influences that may shape behavioural variation between individuals. To this end, we describe the neural circuits in the brain underlying social cognition, particularly with reference to self-knowledge and the concept of theory of mind – the ability to think about things from the perspective of another. Cellular aspects of social cognition, although still unclear, are explored in relation to the putative role of mirror neurons. The neurobiology of attachment underlying social relationships aids the discussion of the molecular underpinnings of social cognition with particular reference to neuropeptides: oxytocin and vasopressin. Oxytocin and vasopressin are nonapeptides that have been increasingly identified as playing a pivotal role in social cognition. Animal studies have highlighted the role of these peptides in social roles as diverse as parenting behaviour, social recognition and affiliative behaviours (Chapter 11). Here we discuss the evidence implicating these neuropeptides in humans. Moreover, it is increasingly recognised in animal studies that the processes of social cognition are supported by reward circuitry, underpinned by the dopaminergic neurotransmitter system in the brain.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 446 - 469
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gallinat, J., Bauer, M. & Heinz, A. (2008) Genes and neuroimaging: advances in psychiatric research. Neurodegenerative Diseases, 5, 277–285.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Craig, I. & McGuffin, P. (2003) Behavioral Genetics in the Postgenomic Era. Washington, DC: American Psychological Association.CrossRefGoogle ScholarPubMed
Rutter, M. (2006) Genes and Behavior: Nature–Nurture Interplay Explained. Oxford: Blackwell.Google Scholar
Adolphs, R. (2003) Is the human amygdala specialized for processing social information?Annals of the New York Academy of Sciences, 985, 326–340.CrossRefGoogle ScholarPubMed
Adolphs, R. & Spezio, M. (2006) Role of the amygdala in processing visual social stimuli. Progress in Brain Research, 156, 363–378.CrossRefGoogle ScholarPubMed
Adolphs, R., Gosselin, F., Buchanan, T. W.et al. (2005) A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 68–72.CrossRefGoogle ScholarPubMed
Amodio, D. M. & Frith, C. D. (2006) Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.CrossRefGoogle ScholarPubMed
Aragona, B. J. & Wang, Z. (2007) Opposing regulation of pair bond formation by cAMP signaling within the nucleus accumbens shell. Journal of Neuroscience, 27, 13352–13356.CrossRefGoogle ScholarPubMed
Aragona, B. J., Liu, Y., Curtis, J.T., Stephan, F.K. & Wang, Z. (2003) A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. Journal of Neuroscience, 23, 3483–3490.CrossRefGoogle ScholarPubMed
Azmitia, E. C. (1999) Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology, 21 (2 Suppl), 33–45S.CrossRefGoogle ScholarPubMed
Bales, K. L., Plotsky, P. M., Young, L. J.et al. (2007) Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors. Neuroscience, 144, 38–45.CrossRefGoogle ScholarPubMed
Balleine, B. W., Delgado, M. R. & Hikosaka, O. (2007) The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 8161–8165.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (2002) The extreme male brain theory of autism. Trends in Cognitive Sciences, 6, 248–254.CrossRefGoogle ScholarPubMed
Bartz, J. A. & McInnes, L. A. (2007) CD38 regulates oxytocin secretion and complex social behavior. BioEssays, 29, 837–841.CrossRefGoogle ScholarPubMed
Bassett, A. S., Caluseriu, O., Weksberg, R., Young, D. A. & Chow, E. W. (2007) Catechol-O-methyl transferase and expression of schizophrenia in 73 adults with 22q11 deletion syndrome. Biological Psychiatry, 61, 1135–1140.CrossRefGoogle ScholarPubMed
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U. & Fehr, E. (2008) Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58, 639–650.CrossRefGoogle ScholarPubMed
Bielsky, I. F., Hu, S. B., Szegda, K. L., Westphal, H. & Young, L. J. (2004) Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology, 29, 483–493.CrossRefGoogle ScholarPubMed
Bielsky, I. F., Hu, S. B., Ren, X., Terwilliger, E. F. & Young, L. J. (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron, 47, 503–513.CrossRefGoogle ScholarPubMed
Bizot, J., Bihan, C., Puech, A. J., Hamon, M. & Thiebot, M. (1999) Serotonin and tolerance to delay of reward in rats. Psychopharmacology (Berlin), 146, 400–412.CrossRefGoogle ScholarPubMed
Born, J., Lange, T., Ker, W.et al. (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nature Neuroscience, 5, 514–516.CrossRefGoogle ScholarPubMed
Broad, K. D., Curley, J. P. & Keverne, E. B. (2006) Mother–infant bonding and the evolution of mammalian social relationships. Philosophical Transactions of the Royal Society B, 361, 2199–2214.CrossRefGoogle ScholarPubMed
Brothers, L., Ring, B. & Kling, A. (1990) Response of neurons in the macaque amygdala to complex social stimuli. Behavioural Brain Research, 41, 199–213.CrossRefGoogle ScholarPubMed
Brown, S. M., Peet, E., Manuck, S. B.et al. (2005) A regulatory variant of the human tryptophan hydroxylase-2 gene biases amygdala reactivity. Molecular Psychiatry, 10, 884–888, 805.CrossRefGoogle ScholarPubMed
Burns, P. D., Mendes, J. O., Yemm, R. S., et al. (2001) Cellular mechanisms by which oxytocin mediates ovine endometrial prostaglandin Fα synthesis: role of g(i) proteins and mitogen-activated protein kinases. Biology of Reproduction, 65, 1150–1155.CrossRefGoogle Scholar
Caldwell, H. K., Lee, H. J., Macbeth, A. H. & Young, W. S. (2008) Vasopressin: behavioral roles of an original neuropeptide. Progress in Neurobiology, 84, 1–24.CrossRefGoogle ScholarPubMed
Campbell, A. (2008) Attachment, aggression and affiliation: the role of oxytocin in female social behavior. Biological Psychology, 77, 1–10.CrossRefGoogle ScholarPubMed
Canli, T. & Lesch, K. P. (2007) Long story short: the serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 1103–1109.CrossRefGoogle ScholarPubMed
Canli, T., Congdon, E., Gutknecht, L., Constable, R. T. & Lesch, K. P. (2005) Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation. Journal of Neural Transmission, 112, 1479–1485.CrossRefGoogle ScholarPubMed
Cardinal, R. (2006) Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19, 1277–1301.CrossRefGoogle ScholarPubMed
Carter, C. S. (2007) Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders?Behavioural Brain Research, 176, 170–186.CrossRefGoogle ScholarPubMed
Carver, C. S. & Miller, C. J. (2006) Relations of serotonin function to personality: current views and a key methodological issue. Psychiatry Research, 144, 1–15.CrossRefGoogle Scholar
Chen, J., Lipska, B. K., Halim, N.et al. (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75, 807–821.CrossRefGoogle ScholarPubMed
Choleris, E., Gustafsson, J. A., Korach, K. S.et al. (2003) An estrogen-dependent four-gene micronet regulating social recognition: a study with oxytocin and estrogen receptor-alpha and -beta knockout mice. Proceedings of the National Academy of Sciences of the USA, 100, 6192–6197.CrossRefGoogle ScholarPubMed
Curtis, J. T., Liu, Y., Aragona, B. J. & Wang, Z. (2006) Dopamine and monogamy. Brain Research, 1126, 76–90.CrossRefGoogle ScholarPubMed
Delgado, M. R. (2007) Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.CrossRefGoogle ScholarPubMed
Denk, F., Walton, M. E., Jennings, K. A.et al. (2005) Differential involvement of serotonin and dopamine systems in cost–benefit decisions about delay or effort. Psychopharmacology (Berlin), 179, 587–596.CrossRefGoogle ScholarPubMed
Quervain, D. J., Fischbacher, U., Treyer, V.et al. (2004) The neural basis of altruistic punishment. Science, 305, 1254–1258.CrossRefGoogle ScholarPubMed
Vries, G. J. & Panzica, G. C. (2006) Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience, 138, 947–955.CrossRefGoogle ScholarPubMed
Dolan, R. J. (2007) The human amygdala and orbital prefrontal cortex in behavioural regulation. Philosophical Transactions of the Royal Society B, 362, 787–799.CrossRefGoogle ScholarPubMed
Doya, K. (2002) Metalearning and neuromodulation. Neural Networks, 15, 495–506.CrossRefGoogle ScholarPubMed
Drabant, E. M., Hariri, A. R.Meyer-Lindenberg, A.et al. (2006) Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry, 63, 1396–1406.CrossRefGoogle ScholarPubMed
Fairhall, S. L. & Ishai, A. (2007) Effective connectivity within the distributed cortical network for face perception. Cerebral Cortex, 17, 2400–2406.CrossRefGoogle ScholarPubMed
Ferguson, J. N., Young, L. J., Hearn, E. F.et al. (2000) Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284–288.CrossRefGoogle ScholarPubMed
Ferguson, J. N., Aldag, J. M., Insel, T. R. & Young, L. J. (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. Journal of Neuroscience, 21, 8278–8285.CrossRefGoogle ScholarPubMed
Ferris, C. F. (2005) Vasopressin/oxytocin and aggression. Novartis Foundation Symposium, 268, 190–198; discussion 198–200, 242–253.Google ScholarPubMed
Flint, J., Shifman, S., Munafo, M. & Mott, R. (2008) Genetic variants in major depression. Novartis Foundation Symposium, 289, 23–32.CrossRefGoogle ScholarPubMed
Frith, C. D. & Frith, U. (2007) Social cognition in humans. Current Biology, 17, R724–732.CrossRefGoogle ScholarPubMed
Gallese, V., Eagle, M. N. & Migone, P. (2007) Intentional attunement: mirror neurons and the neural underpinnings of interpersonal relations. Journal of the American Psychoanalytic Association, 55, 131–176.CrossRefGoogle ScholarPubMed
Gatewood, J. D., Wills, A., Shetty, S.et al. (2006) Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice. Journal of Neuroscience, 26, 2335–2342.CrossRefGoogle ScholarPubMed
Gimpl, G. & Fahrenholz, F. (2001) The oxytocin receptor system: structure, function, and regulation. Physiological Reviews, 81, 629–683.CrossRefGoogle ScholarPubMed
Guastella, A. J., Mitchell, P. B. & Dadds, M. R. (2008) Oxytocin increases gaze to the eye region of human faces. Biological Psychiatry, 63, 3–5.CrossRefGoogle ScholarPubMed
Hammock, E. A. & Young, L. J. (2006) Oxytocin, vasopressin and pair bonding: implications for autism. Philosophical Transactions of the Royal Society B, 361, 2187–2198.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S.Tessitore, A.et al. (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–403.CrossRefGoogle ScholarPubMed
Hariri, A. R., Drabant, E. M., Munoz, K. E.et al. (2005) A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146–152.CrossRefGoogle ScholarPubMed
Harmer, C. J., Bhagwagar, Z., Perrett, D. I.et al. (2003) Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology, 28, 148–152.CrossRefGoogle ScholarPubMed
Harmer, C. J., Shelley, N. C., Cowen, P. J. & Goodwin, G. M. (2004) Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. American Journal of Psychiatry, 161, 1256–1263.CrossRefGoogle ScholarPubMed
Heinrichs, M., Baumgartner, T., Kirschbaum, C. & Ehlert, U. (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 1389–1398.CrossRefGoogle ScholarPubMed
Herrmann, M., Huter, T., Müller, F. et al. (2007) Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on emotional processing. Cerebral Cortex, 5, 1160–1163.Google Scholar
Ho, S. S., Chow, B. K. & Yung, W. H. (2007) Serotonin increases the excitability of the hypothalamic paraventricular nucleus magnocellular neurons. European Journal of Neuroscience, 25, 2991–3000.CrossRefGoogle ScholarPubMed
Hollander, E., Bartz, J., Chaplin, W.et al. (2007) Oxytocin increases retention of social cognition in autism. Biological Psychiatry, 61, 498–503.CrossRefGoogle ScholarPubMed
Huber, D., Veinante, P. & Stoop, R. (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308, 245–248.CrossRefGoogle ScholarPubMed
Iacoboni, M. & Dapretto, M. (2006) The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7, 942–951.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M.et al. (1999) Cortical mechanisms of human imitation. Science, 286, 2526–2528.CrossRefGoogle ScholarPubMed
Insel, T. R. & Fernald, R. D. (2004) How the brain processes social information: searching for the social brain. Annual Review of Neuroscience, 27, 697–722.CrossRefGoogle ScholarPubMed
Ishiwari, K., Weber, S. M., Mingote, S., Correa, M. & Salamone, J. D. (2004) Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behavioural Brain Research, 151, 83–91.CrossRefGoogle ScholarPubMed
Izquierdo, A., Newman, T. K., Higley, J. D. & Murray, E. A. (2007) Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys. Proceedings of the National Academy of Sciences of the USA, 104, 14128–14133.CrossRefGoogle ScholarPubMed
Jabbi, M., Swart, M. & Keysers, C. (2007) Empathy for positive and negative emotions in the gustatory cortex. NeuroImage, 34, 1744–1753.CrossRefGoogle ScholarPubMed
Jacob, S., Brune, C. W., Carter, C. S.et al. (2007) Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neuroscience Letters, 417, 6–9.CrossRefGoogle ScholarPubMed
Jin, D., Liu, H. X., Hirai, H.et al. (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 446, 41–45.CrossRefGoogle ScholarPubMed
Keer, S. E. & Stern, J. M. (1999) Dopamine receptor blockade in the nucleus accumbens inhibits maternal retrieval and licking, but enhances nursing behavior in lactating rats. Physiology and Behavior, 67, 659–669.CrossRefGoogle ScholarPubMed
Keverne, E. B. & Curley, J. P. (2004) Vasopressin, oxytocin and social behaviour. Current Opinion in Neurobiology, 14, 777–783.CrossRefGoogle ScholarPubMed
Keysers, C. & Perrett, D. I. (2004) Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Sciences, 8, 501–507.CrossRefGoogle ScholarPubMed
Keysers, C., Wicker, B., Gazzola, V.et al. (2004) A touching sight: SII/PV activation during the observation and experience of touch. Neuron, 42, 335–346.CrossRefGoogle Scholar
Kim, S. J., Young, L. J., Gonen, D.et al. (2002) Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Molecular Psychiatry, 7, 503–507.CrossRefGoogle ScholarPubMed
Kirsch, P., Esslinger, C., Chen, Q.et al. (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25, 11489–11493.CrossRefGoogle ScholarPubMed
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. (2005) Oxytocin increases trust in humans. Nature, 435, 673–676.CrossRefGoogle ScholarPubMed
Landgraf, R. & Neumann, I. D. (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Frontiers in Neuroendocrinology, 25, 150–176.CrossRefGoogle ScholarPubMed
Lim, M. M. & Young, L. J. (2006) Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormones and Behavior, 50, 506–517.CrossRefGoogle ScholarPubMed
Lim, M. M., Bielsky, I. F. & Young, L. J. (2005) Neuropeptides and the social brain: potential rodent models of autism. International Journal of Developmental Neuroscience, 23, 235–243.CrossRefGoogle ScholarPubMed
Liu, Y. & Wang, Z. (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121, 537–544.CrossRefGoogle ScholarPubMed
Loup, F., Tribollet, E., Dubois-Dauphin, M. & Dreifuss, J. J. (1991) Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain: an autoradiographic study. Brain Research, 555, 220–232.CrossRefGoogle Scholar
Malin, E. L. & McGaugh, J. L. (2006) Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proceedings of the National Academy of Sciences of the USA, 103, 1959–1963.CrossRefGoogle ScholarPubMed
Matthew, S. J., Coplan, J. D. & Gorman, J. M. (2001) Neurobiological mechanisms of social anxiety disorder. American Journal of Psychiatry, 158, 1558–1567.CrossRefGoogle Scholar
McNamara, I. M., Borella, A. W., Bialowas, L. A. & Whitaker-Azmitia, P. M. (2008) Further studies in the developmental hyperserotonemia model (DHS) of autism: social, behavioral and peptide changes. Brain Research, 1189, 203–214.CrossRefGoogle ScholarPubMed
Meaney, M. J. & Szyf, M. (2005) Maternal care as a model for experience-dependent chromatin plasticity?Trends in Neuroscience, 28, 456–463.CrossRefGoogle Scholar
Meyer-Lindenberg, A., Kohn, P. D., Kolachana, B.et al. (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nature Neuroscience, 8, 594–596.CrossRefGoogle ScholarPubMed
Mobini, S., Chiang, T. J., Ho, M. Y., Bradshaw, C. M. & Szabadi, E. (2000) Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berlin), 152, 390–397.CrossRefGoogle ScholarPubMed
Modahl, C., Green, L., Fein, D.et al. (1998) Plasma oxytocin levels in autistic children. Biological Psychiatry, 43, 270–277.CrossRefGoogle ScholarPubMed
Munafo, M. R., Clark, T. & Flint, J. (2005) Does measurement instrument moderate the association between the serotonin transporter gene and anxiety-related personality traits? A meta-analysis. Molecular Psychiatry, 10, 415–419.CrossRefGoogle ScholarPubMed
Nestler, E. (2005) Is there a common molecular pathway for addiction?Nature Neuroscience, 8, 1445–9.CrossRefGoogle Scholar
Nomura, M., McKenna, E., Korach, K. S., Pfaff, D. W. & Ogawa, S. (2002) Estrogen receptor-beta regulates transcript levels for oxytocin and arginine vasopressin in the hypothalamic paraventricular nucleus of male mice. Brain Research, Molecular Brain Research, 109, 84–94.CrossRefGoogle ScholarPubMed
Pezawas, L., Meyer-Lindenberg, A., Drabant, E.et al. (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828–834.CrossRefGoogle Scholar
Porges, S. W. (2007) The polyvagal perspective. Biological Psychology, 74, 116–143.CrossRefGoogle ScholarPubMed
Poulos, C., Parker, J. L. & Le, A. D. (1996) Dexfenfluramine and 8-OH-DPAT modulate impulsivity in a delay-of-reward paradigm: implications for a correspondence with alcohol consumption. Behavioural Pharmacology, 17, 395–399.CrossRefGoogle Scholar
Prinssen, E. P., Balestra, W., Bemelmans, F. F. & Cools, A. R. (1994) Evidence for a role of the shell of the nucleus accumbens in oral behaviour of freely moving rats. Journal of Neuroscience, 14, 1555–1562.CrossRefGoogle ScholarPubMed
Rilling, J., Gutman, D., Zeh, T.et al. (2002) A neural basis for social cooperation. Neuron, 35, 395–405.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Craighero, L. (2004) The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2007) The representation of information about faces in the temporal and frontal lobes. Neuropsychologia, 45, 124–143.CrossRefGoogle ScholarPubMed
Rolls, E. T., Critchley, H. D., Browning, A. S. & Inoue, K. (2006) Face-selective and auditory neurons in the primate orbitofrontal cortex. Experimental Brain Research, 170, 74–87.CrossRefGoogle ScholarPubMed
Sebat, J., Lakshmi, B., Malhotra, D.et al. (2007) Strong association of de novo copy number mutations with autism. Science, 316, 445–449.CrossRefGoogle ScholarPubMed
Singer, T. (2007) The neuronal basis of empathy and fairness. Novartis Foundation Symposium, 278, 20–30; discussion 30–40, 89–96, 216–221.Google ScholarPubMed
Skuse, D. (2006) Genetic influences on the neural basis of social cognition. Philosophical Transactions of the Royal Society B, 361, 2129–2141.CrossRefGoogle ScholarPubMed
Skuse, D. H. & Gallagher, L. (2009) Dopaminergic–neuropeptide interactions in the social brain. Trends in Cognitive Sciences, 13, 27–35.CrossRefGoogle ScholarPubMed
Stein, M. B., Goldin, P. R., Sareen, J., Zorrilla, L. T. & Brown, G. G. (2002) Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Archives of General Psychiatry, 59, 1027–1034.CrossRefGoogle ScholarPubMed
Storm, E. E. & Tecott, L. H. (2005) Social circuits: peptidergic regulation of mammalian social behavior. Neuron, 47, 483–486.CrossRefGoogle ScholarPubMed
Suomi, S. J. (2005) Aggression and social behaviour in rhesus monkeys. Novartis Foundation Symposium, 268, 216–222.Google ScholarPubMed
Takayanagi, Y., Yoshida, M., Bielsky, I. F.et al. (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proceedings of the National Academy of Sciences of the USA, 102, 16096–16101.CrossRefGoogle ScholarPubMed
Tanaka, S., Doya, K., Okada, G.et al. (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7, 887–893.CrossRefGoogle ScholarPubMed
Tanaka, S., Schweighofer, N, Asahi, S. et al. (2007) Serotonin differentially regulates short- and long-term prediction of rewards in the ventral and dorsal striatum. PLoS ONE, 2 (12), e1333.CrossRefGoogle Scholar
Tansey, K., Anney, R., Cochrane, L. E., Gil, M. & Gallagher, L. (2008) Further evidence supporting oxytocin receptor in an Irish sample. International Meeting for Autism Research (IMFAR), London.
Tessitore, A., Hariri, A. R., Fera, F.et al. (2002) Dopamine modulates the response of the human amygdala: a study in Parkinson's disease. Journal of Neuroscience, 22, 9099–9103.CrossRefGoogle ScholarPubMed
Thompson, J. C., Clarke, M., Stewart, T. & Puce, A. (2005) Configural processing of biological motion in human superior temporal sulcus. Journal of Neuroscience, 25, 9059–9066.CrossRefGoogle ScholarPubMed
Thompson, R. R., George, K., Walton, J. C., Orr, S. P. & Benson, J. (2006) Sex-specific influences of vasopressin on human social communication. Proceedings of the National Academy of Sciences of the USA, 103, 7889–7894.CrossRefGoogle ScholarPubMed
Tunbridge, E. M., Harrison, P. J. & Weinberger, D. R. (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141–151.CrossRefGoogle ScholarPubMed
Tunbridge, E. M., Weickert, C. S., Kleinman, J. E.et al. (2007) Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17, 1206–1212.CrossRefGoogle ScholarPubMed
Veenema, A. H., Blume, A., Niederle, D., Buwalda, B. & Neumann, I. D. (2006) Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 24, 1711–1720.CrossRefGoogle ScholarPubMed
Vorstman, J. A., Jalali, G. R., Rappaport, E. F.et al. (2006) MLPA: a rapid, reliable, and sensitive method for detection and analysis of abnormalities of 22q. Human Mutation, 27, 814–821.CrossRefGoogle ScholarPubMed
Wassink, T. H., Piven, J., Vieland, V. J.et al. (2004) Examination of AVPR1a as an autism susceptibility gene. Molecular Psychiatry, 9, 968–972.CrossRefGoogle ScholarPubMed
Wendland, J. R., Lesch, K. P., Newman, T. K.et al. (2006) Differential functional variability of serotonin transporter and monoamine oxidase a genes in macaque species displaying contrasting levels of aggression-related behavior. Behavior Genetics, 36, 163–172.CrossRefGoogle ScholarPubMed
Whalen, P. J., Kagan, J., Cook, R. G.et al. (2004) Human amygdala responsivity to masked fearful eye whites. Science, 306, 2061.CrossRefGoogle ScholarPubMed
Williams, J. R., Catania, K. C. & Carter, C. S. (1992) Development of partner preferences in female prairie voles (Microtus ochrogaster): the role of social and sexual experience. Hormones and Behavior, 26, 339–349.CrossRefGoogle ScholarPubMed
Wogar, M., Bradshaw, C. M. & Szabadi, E. (1993) Effect of lesions of the ascending 5-hydroxytryptaminergic pathways on choice between delayed reinforcers. Psychopharmacology (Berlin), 111, 239–243.CrossRefGoogle ScholarPubMed
Wu, S., Jia, M., Ruan, Y.et al. (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biological Psychiatry, 58, 74–77.CrossRefGoogle ScholarPubMed
Yirmiya, N., Rosenberg, C., Levi, S.et al. (2006) Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Molecular Psychiatry, 11, 488–494.CrossRefGoogle Scholar
Ylisaukko-Oja, T., Alarcon, M., Cantor, R. M.et al. (2006) Search for autism loci by combined analysis of autism genetic resource exchange and Finnish families. Annals of Neurology, 59, 145–155.CrossRefGoogle ScholarPubMed
Young, L. J. & Wang, Z. (2004) The neurobiology of pair bonding. Nature Neuroscience, 7, 1048–1054.CrossRefGoogle ScholarPubMed
Young, L. J., Lim, M. M., Gingrich, B. & Insel, T. R. (2001) Cellular mechanisms of social attachment. Hormones and Behavior, 40, 133–138.CrossRefGoogle ScholarPubMed
Young, L. J., Murphy Young, A. Z. & Hammock, E. A. (2005) Anatomy and neurochemistry of the pair bond. Journal of Comparative Neurology, 493, 51–57.CrossRefGoogle ScholarPubMed
Young, W. S., Li, J., Wersinger, S. R. & Palkovits, M. (2006) The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience, 143, 1031–1039.CrossRefGoogle ScholarPubMed
Zeki, S. (2007) The neurobiology of love. FEBS Letters, 581, 2575–2759.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×