Published online by Cambridge University Press: 11 May 2010
INTRODUCTION
Soil respiration, globally 68–80 Pg C y−1, represents the second largest carbon flux between ecosystems and the atmosphere (Schimel et al., 1996; Raich et al., 2002). This is more than ten times the current rate of fossil fuel combustion and indicates that each year around 10% of the atmosphere's CO2 cycles through the soil. Thus, even a small change in soil respiration could significantly intensify – or mitigate – current atmospheric increases of CO2, with potential feedbacks to climate change. Despite this global significance and the considerable scientific commitment to its study over the last decades, there is still limited comprehensive understanding of the factors controlling temporal and across-ecosystem variability of soil respiration.
This understanding is largely hampered by the fact that studies are often conducted and compared at different temporal and spatial scales that are not compatible. Since, particularly in large-scale studies, factors influencing soil respiration often correlate with each other, responses of soil respiration to those factors are confounded and only apparent relationships are obtained.
For the purpose of this chapter, methods (and their associated problems) for analyzing soil respiration data from different scales are reviewed and jointly interpreted with emphasis on the temperature dependence of soil respiration.
MODELLING SOIL RESPIRATION: AN OVERVIEW
General modelling approaches
Soil respiration – defined as the CO2 efflux from the soil surface – originates from the metabolic activity of roots (autotrophic respiration), micro-organisms (bacteria, actinomycetes and fungi) and soil meso- and macro-fauna (heterotrophic respiration).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.