Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T10:36:23.526Z Has data issue: false hasContentIssue false

18 - Simultaneity versus asynchrony of visual motion and luminance changes

from Part III - Temporal phenomena: binding and asynchrony

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

Much work has been described comparing relative timing of different features, mostly motion and color or motion and a flash. Here we study the timing relations of pairs of motion stimuli and pairs of motion and flicker or motion and flashes. In a two-alternative forced choice task we measured thresholds for detecting asynchrony, providing estimates for shifts in subjective simultaneity as well as the window of synchronicity.

Windows of synchronicity varied for different combinations of motion direction. Comparing different velocities or different contrast levels revealed large shifts in subjective synchronicity. Contrast effects were much larger for motion reversals than for luminance flicker, indicating a major influence on motion mechanisms. Our results are compatible with the hypothesis of a flexible, high-level brain program for timing analysis. Temporal resolution of this program is limited. Differences in the processing of separate motion characteristics should be taken into account in cross-feature comparisons involving visual motion information. Results for motion reversals versus luminance flashes did not reveal a clear differential shift in time. Large differences within the motion system and the lack of a differential latency between motion reversals and flashes suggest that the flash-lag effect may be largely caused by instant spatial remapping of positional information for moving objects. We show that spatial extrapolation does not necessarily result in overshoot errors when the motion stops.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8: 1185–1202.CrossRefGoogle ScholarPubMed
Bartels, A., & Zeki, S. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B 265: 2327–2332.CrossRefGoogle ScholarPubMed
Borghuis, B. G., Perge, J. A., Vajda, I., van Wezel, R. J., van de Grind, W. A., & Lankheet, M. J. (2003). The motion reverse correlation (MRC) method: a linear systems approach in the motion domain. J Neurosci Methods 123(2): 153–166.CrossRefGoogle ScholarPubMed
Dennett, D. C., & Kinsbourne, M. (1992). Time and the observer. The where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.CrossRefGoogle Scholar
Donders, F. C. (1868). On the speed of mental processes. Reproduced in Acta Psychologica 30: 412–431.CrossRefGoogle Scholar
Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.CrossRefGoogle ScholarPubMed
Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.Google Scholar
Hazelhoff, F. F., & Wiersma, H. (1925). Die Wahrnehmingszeit. Zeitschrift für Psychologie 96: 171–188, and 97: 174–190.Google Scholar
Johnston, A., & Nishida, S. (2001). Time perception: brain time or event time? Curr Biol 11: R427–R430.CrossRefGoogle ScholarPubMed
Koenderink, J. J., van Doorn, A. J., & van de Grind, W. A. (1985). Spatial and temporal parameters of motion detection in the peripheral visual field. J Opt Soc Am A 2: 252–259.CrossRefGoogle ScholarPubMed
Krekelberg, B., & Lappe, M. (1999). Temporal recruitment along the trajectory of moving objects and the perception of position. Vision Res 39: 2669–2679.CrossRefGoogle Scholar
Metzger, W. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.CrossRefGoogle Scholar
Moutoussis, K., & Zeki, S. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B Biol Sci 264(1380): 393–399.CrossRefGoogle ScholarPubMed
Moutoussis, K., & Zeki, S. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B Biol Sci 264(1387): 1407–1414.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370: 256–257.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature 386: 66–69.Google ScholarPubMed
Nijhawan, R. (2001). The flash-lag phenomenon: object and eye movements. Perception 30: 263–282.Google ScholarPubMed
Nishida, S., & Johnston, A. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr Biol 12: 359–368.CrossRefGoogle Scholar
Perge, J. A., Borghuis, B. G., Bours, R. J., Lankheet, M. J., & van Wezel, R. J. (2005). Temporal dynamics of direction tuning in motion sensitive macaque area MT. J Neurophysiol 93: 2104–2116.CrossRefGoogle ScholarPubMed
Pöppel, E. (2000). Grenzen des Bewusstseins (Limits of Consciousness). Frankfurt|a.M. & Leipzig: Insel Verlag.Google Scholar
Purushothaman, G., Patel, S. S., Bedell, H. E., & Öğmen, H. (1998). Moving ahead through differential visual latency. Nature 396: 424.CrossRefGoogle ScholarPubMed
Stein, B. E., & Meredith, M. A. (1993). The Merging of the Senses. Cambridge, MA: Bradford Book, MIT Press.Google Scholar
Vajda, I., Lankheet, M. J., Borghuis, B. G., & van de Grind, W. A. (2004). Dynamics of directional selectivity in area 18 and PMLS of the cat. Cereb Cortex 14(7): 759–767.CrossRefGoogle ScholarPubMed
van de Grind, W. A. (2002). Physical, neural, and mental timing. Conscious Cogn 11: 241–264.CrossRefGoogle ScholarPubMed
van de Grind, W. A., Koenderink, J. J., & van Doorn, A. J. (1986). The distribution of human motion detector properties in the monocular visual field. Vision Res 26: 797–810.CrossRefGoogle ScholarPubMed
van den Berg, A. V., & van de Grind, W. A. (1989). Reaction times to motion onset and motion detection thresholds reflect the properties of bilocal motion detectors. Vision Res 29(9): 1261–1266.CrossRefGoogle ScholarPubMed
van Doorn, A. J., & Koenderink, J. J. (1982). Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45: 179–188.Google ScholarPubMed
Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function I: fitting, sampling and goodness-of-fit. Percept Psychophys 63(8): 1293–1313.CrossRefGoogle ScholarPubMed
Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function II: bootstrap based confidence intervals and sampling. Percept Psychophys 63(8): 1314–1329.CrossRefGoogle ScholarPubMed
Zeki, S. (2003). The disunity of consciousness. Trends Cogn Sci 7(5): 214–218.CrossRefGoogle Scholar
Zeki, S., & Bartels, A. (1998a). The asynchrony of consciousness. Proc R Soc Lond B 265: 1583–1585.CrossRefGoogle Scholar
Zeki, S., & Bartels, A. (1998b). The autonomy of the visual systems and the modularity of conscious vision. Philos Trans R Soc Lond B Biol Sci 353: 1911–1914.CrossRefGoogle ScholarPubMed
Zeki, S., & Bartels, A. (1999). Toward a theory of visual consciousness. Conscious Cogn 8: 225–259.CrossRefGoogle Scholar
Zeki, S., & Moutoussis, K. (1997). Temporal hierarchy of the visual perceptive systems in the mondrian world. Proc R Soc Lond B Biol Sci 264(1387): 1415–1419.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×