Crossref Citations
This Book has been
cited by the following publications. This list is generated based on data provided by Crossref.
Humeau-Heurtier, Anne
2016.
Multivariate Generalized Multiscale Entropy Analysis.
Entropy,
Vol. 18,
Issue. 11,
p.
411.
Starck, Jean-Luc
2016.
Sparsity and inverse problems in astrophysics.
Journal of Physics: Conference Series,
Vol. 699,
Issue. ,
p.
012010.
Canu, S.
Flamary, R.
Mary, D.
Mary, D.
Flamary, R.
Theys, C.
and
Aime, C.
2016.
Introduction to optimization with applications in astronomy and astrophysics.
EAS Publications Series,
Vol. 78-79,
Issue. ,
p.
127.
Lanusse, F.
Starck, J.-L.
Leonard, A.
and
Pires, S.
2016.
High resolution weak lensing mass mapping combining shear and flexion.
Astronomy & Astrophysics,
Vol. 591,
Issue. ,
p.
A2.
Selesnick, Ivan
and
Farshchian, Masoud
2017.
Sparse Signal Approximation via Nonseparable Regularization.
IEEE Transactions on Signal Processing,
Vol. 65,
Issue. 10,
p.
2561.
Dragovich, B.
Khrennikov, A. Yu.
Kozyrev, S. V.
Volovich, I. V.
and
Zelenov, E. I.
2017.
p-Adic mathematical physics: the first 30 years.
p-Adic Numbers, Ultrametric Analysis and Applications,
Vol. 9,
Issue. 2,
p.
87.
Sanyal, Nilotpal
and
Ferreira, Marco A. R.
2017.
Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis.
Sankhya B,
Vol. 79,
Issue. 2,
p.
361.
Włodarczyk, Bartłomiej
2017.
Edge-illumination x-ray phase contrast imaging restoration using discrete curvelet regularization transform.
Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics,
Vol. 25,
Issue. 1,
p.
145.
Selesnick, Ivan
2017.
Sparse Regularization via Convex Analysis.
IEEE Transactions on Signal Processing,
Vol. 65,
Issue. 17,
p.
4481.
Farrens, S.
Ngolè Mboula, F. M.
and
Starck, J.-L.
2017.
Space variant deconvolution of galaxy survey images.
Astronomy & Astrophysics,
Vol. 601,
Issue. ,
p.
A66.
Naumova, Valeriya
and
Schnass, Karin
2017.
Dictionary learning from incomplete data for efficient image restoration.
p.
1425.
Michel, Volker
and
Simons, Frederik J
2017.
A general approach to regularizing inverse problems with regional data using Slepian wavelets.
Inverse Problems,
Vol. 33,
Issue. 12,
p.
125016.
Zhu, Lingchen
Liu, Entao
and
McClellan, James H.
2017.
Sparse-promoting full-waveform inversion based on online orthonormal dictionary learning.
GEOPHYSICS,
Vol. 82,
Issue. 2,
p.
R87.
Aguilar, Juan C.
Misawa, Masaki
Matsuda, Kiyofumi
Suzuki, Yoshio
Takeuchi, Akihisa
and
Yasumoto, Masato
2018.
Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.
Journal of Synchrotron Radiation,
Vol. 25,
Issue. 3,
p.
808.
Mathew, Raji Susan
and
Paul, Joseph Suresh
2018.
Sparsity Promoting Adaptive Regularization for Compressed Sensing Parallel MRI.
IEEE Transactions on Computational Imaging,
Vol. 4,
Issue. 1,
p.
147.
Muramatsu, S.
Chai, S.
Ono, S.
Ota, T.
Nin, F.
and
Hibino, H.
2018.
Oct Volumetric Data Restoration via Primal-Dual Plug-and-Play Method.
p.
801.
Jeffrey, N
Abdalla, F B
Lahav, O
Lanusse, F
Starck, J-L
Leonard, A
Kirk, D
Chang, C
Baxter, E
Kacprzak, T
Seitz, S
Vikram, V
Whiteway, L
Abbott, T M C
Allam, S
Avila, S
Bertin, E
Brooks, D
Carnero Rosell, A
Carrasco Kind, M
Carretero, J
Castander, F J
Crocce, M
Cunha, C E
D’Andrea, C B
da Costa, L N
Davis, C
De Vicente, J
Desai, S
Doel, P
Eifler, T F
Evrard, A E
Flaugher, B
Fosalba, P
Frieman, J
García-Bellido, J
Gerdes, D W
Gruen, D
Gruendl, R A
Gschwend, J
Gutierrez, G
Hartley, W G
Honscheid, K
Hoyle, B
James, D J
Jarvis, M
Kuehn, K
Lima, M
Lin, H
March, M
Melchior, P
Menanteau, F
Miquel, R
Plazas, A A
Reil, K
Roodman, A
Sanchez, E
Scarpine, V
Schubnell, M
Sevilla-Noarbe, I
Smith, M
Soares-Santos, M
Sobreira, F
Suchyta, E
Swanson, M E C
Tarle, G
Thomas, D
and
Walker, A R
2018.
Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SV.
Monthly Notices of the Royal Astronomical Society,
Vol. 479,
Issue. 3,
p.
2871.
Frontera-Pons, J.
Sureau, F.
Moraes, B.
Bobin, J.
and
Abdalla, F. B.
2019.
Representation learning for automated spectroscopic redshift estimation.
Astronomy & Astrophysics,
Vol. 625,
Issue. ,
p.
A73.
Tiwari, Prabhakar
and
Aluri, Pavan K.
2019.
Large Angular-scale Multipoles at Redshift ∼ 0.8.
The Astrophysical Journal,
Vol. 878,
Issue. 1,
p.
32.
Sureau, F.
Voigtlaender, F.
Wust, M.
Starck, J.-L.
and
Kutyniok, G.
2019.
Learning sparse representations on the sphere.
Astronomy & Astrophysics,
Vol. 621,
Issue. ,
p.
A73.