Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T06:19:21.813Z Has data issue: false hasContentIssue false

8 - Morphological Diversity

Published online by Cambridge University Press:  05 October 2015

Jean-Luc Starck
Affiliation:
Centre d’etudes de Saclay, France
Fionn Murtagh
Affiliation:
Royal Holloway, University of London
Jalal Fadili
Affiliation:
Ecole Nationale Supérieure d'Ingénieurs de Caen, France
Get access

Summary

INTRODUCTION

The content of an image is often complex, and there is no single transform which is optimal to represent effectively all the contained features. For example, the Fourier transform is better at sparsifying globally oscillatory textures, while the wavelet transform does a better job with isolated singularities. Even if we limit our class of transforms to the wavelet one, decisions have to be made between e.g. the starlet transform (see Section 3.5) which yields good results for isotropic objects (such as stars and galaxies in astronomical images, or cells in biological images), and the orthogonal wavelet transform (see Section 2.5) which is good for bounded variation images (Cohen et al. 1999).

If we do not restrict ourselves to fixed dictionaries related to fast implicit transforms such as the Fourier or the wavelet dictionaries, one can even design very large dictionaries including many different shapes to represent the data effectively. Following Olshausen and Field (1996b), we can even push the idea one step forward by requiring that the dictionary is not fixed but rather learned to sparsify a set of typical images (patches). Such a dictionary design problem corresponds to finding a sparse matrix factorization and was tackled by several authors (Field 1999; Olshausen and Field 1996a; Simoncelli and Olshausen 2001; Lewicki and Sejnowski 2000; Kreutz-Delgado et al. 2003; Aharon et al. 2006; Peyre et al. 2007). In the rest of the chapter, we restrict ourselves to fixed dictionaries with fast transforms.

8.1.1 The Sparse Decomposition Problem

In the general sparse representation framework, a signal vector x ∈ RN is modeled as the linear combination of T elementary waveforms according to (1.1). In the case of overcomplete representations, the number of waveforms or atoms (ϕi)1≤iT that are columns of the dictionary ɸ is higher than the dimension of the space in which x lies: T > N, or even TN for highly redundant dictionaries.

Type
Chapter
Information
Sparse Image and Signal Processing
Wavelets and Related Geometric Multiscale Analysis
, pp. 197 - 233
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×