Published online by Cambridge University Press: 05 June 2012
The first two of the functions discussed in this chapter are due to Euler. The third is usually associated with Riemann, though it was also studied by Euler. Collectively they are of great importance historically, theoretically, and for purposes of calculation.
Historically and theoretically, study of these functions and their properties provided a considerable impetus to the study and understanding of fundamental aspects of mathematical analysis, including limits, infinite products, and analytic continuation. They also motivated advances in complex function theory, such as the theorems of Weierstrass and of Mittag–Leffler on representations of entire and meromorphic functions. The zeta function and its generalizations are intimately connected with questions of number theory.
From the point of view of calculation, many of the explicit constants of mathematical analysis, especially those that come from definite integrals, can be evaluated by means of the gamma and beta functions.
There is much to be said for proceeding historically in discussing these and other special functions, but we shall not make it a point to do so. In mathematics it is often, even usually, the case that later developments cast a new light on earlier ones. One result is that later expositions can often be made both more efficient and, one hopes, more transparent than the original derivations.
After introducing the gamma and beta functions and their basic properties, we turn to a number of important identities and representations of the gamma function and its reciprocal.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.