Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T23:32:01.468Z Has data issue: false hasContentIssue false

14 - Using the Species–Area Relationship to Predict Extinctions Resulting from Habitat Loss

from Part IV - The Species–Area Relationship in Applied Ecology

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

It is widely acknowledged that we are in the midst of an extinction crisis and habitat loss is generally considered the primary driver. However, providing accurate estimates of extinction rates has proven to be problematic and a range of extinction estimates have been published. Arguably, the most commonly used method for predicting extinctions resulting from habitat loss has been application of the species–area relationship (SAR). The purpose of this chapter is to provide a review of the many ways in which the SAR has been used to predict the number of extinctions resulting from habitat loss. By doing so, we highlight the pitfalls of using the SAR in such a way and discuss how the SAR has been argued to both over-predict and under-predict extinctions. We also provide examples of the myriad ways in which studies have extended and built on standard SAR models and approaches to better model and predict extinctions. We conclude by arguing that there is a need to recognize that any approach based on a single variable (i.e. area), such as the SAR, is unlikely to provide a perfect extinction prediction, regardless of the specific details.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 345 - 367
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, A. P. & White, E. P. (2003) Effects of range size on species–area relationships. Evolutionary Ecology Research, 5, 493499.Google Scholar
Axelsen, J. B., Roll, U., Stone, L. & Solow, A. (2013) Species–area relationships always overestimate extinction rates from habitat loss: Comment. Ecology, 94, 761763.Google Scholar
Babu, S. (2011) Online comment on ‘species–area relationships always overestimate extinction rates from habitat loss’. www.nature.com/nature/journal/v473/n7347/full/nature09985.html#/comments.Google Scholar
Boettiger, C. & Hastings, A. (2013) Tipping points: From patterns to predictions. Nature, 493, 157158.Google Scholar
Bommarco, R., Biesmeijer, J. C., Meyer, B., Potts, S. G., Pöyry, J., Roberts, S. P., Steffan-Dewenter, I. & Öckinger, E. (2010) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 277, 20752082.Google Scholar
Borges, P. A. V., Lobo, J. M., Azevedo, E. B., Gaspar, C., Melo, C. & Nunes, L. V. (2006) Invasibility and species richness of island endemic arthropods: A general model of endemic vs. exotic species. Journal of Biogeography, 33, 169187.Google Scholar
Brook, B. W., Sodhi, N. S. & Ng, P. K. L. (2003) Catastrophic extinctions follow deforestation in Singapore. Nature, 424, 420426.Google Scholar
Brooks, M. T. Brook, B. W., Koh, L. P., Pereira, H. M., Pimm, S. L., Rosenzweig, M. L. & Sodhi, N. S. (2011) Extinctions: Consider all species. Nature, 474, 284.Google Scholar
Brooks, T. & Balmford, A. (1996) Atlantic forest extinctions. Nature, 380, 115.Google Scholar
Canale, C. I. & Henry, P.-Y. (2010) Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Climate Research, 43, 135147.Google Scholar
Chevin, L.-M., Lande, R. & Mace, G. M. (2010) Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS One, 8, e1000357.Google Scholar
Condit, R., Ashton, P. S., Baker, P. Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell, S. P., Foster, R. B., Itoh, A., LaFrankie, J. V., Lee, H. S., Losos, E., Manokaran, N., Sukumar, R. & Yamakura, T. (2000) Spatial patterns in the distribution of tropical tree species. Science, 288, 14141418.Google Scholar
Costello, M. J., May, R. M. & Stork, N. E. (2013) Can we name Earth’s species before they go extinct? Science, 339, 413416.Google Scholar
Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez-Azofeifa, A. (2003) Countryside biogeography of Neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conservation Biology, 17, 18141826.CrossRefGoogle Scholar
Didham, R. K., Lawton, J. H., Hammond, P. M. & Eggleton, P. (1998) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 437451.Google Scholar
Donahue, M. (2017) Possible ivory-billed woodpecker footage breathes life into extinction debate. www.audubon.org/news/possible-ivory-billed-woodpecker-footage-breathes-life-extinction-debate.Google Scholar
Durrett, R. & Levin, S. A. (1996) Spatial models for species–area curves. Journal of Theoretical Biology, 179, 119127.Google Scholar
Evans, M., Possingham, H. & Wilson, K. (2011) Extinctions: Conserve not collate. Nature, 474, 284.CrossRefGoogle Scholar
Fattorini, S. &. Borges, P. V. A. (2012) Species–area relationships underestimate extinction rates. Acta Oecologica, 40, 2730.Google Scholar
Fischer, J. & Lindenmayer, D. B. (2007) Landscape modification and habitat fragmentation: A synthesis. Global Ecology & Biogeography, 16, 265280.Google Scholar
Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957.Google Scholar
Habel, J. C., Trusch, R., Schmitt, T., Ochse, M. & Ulrich, W. (2019) Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany. Scientific Reports, 9, 14921.Google Scholar
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D.-X. & Townshend, J. R. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.Google Scholar
Halley, J. M., Sgardeli, V. & Monokrousos, N. (2013) Species–area relationships and extinction forecasts. Annals of the New York Academy of Sciences, 1286, 5061.Google Scholar
Hanski, I. & Ovaskainen, O. (2003) Metapopulation theory for fragmented landscapes. Theoretical Population Biology, 64, 119127.Google Scholar
Hanski, I., Koivulehto, H., Cameron, A. & Rahagalala, P. (2007) Deforestation and apparent extinctions of endemic forest beetles in Madagascar. Biology Letters, 3, 344347.Google Scholar
Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. (2013) Species–fragmented area relationship. Proceedings of the National Academy of Sciences USA, 110, 1271512720.Google Scholar
Harte, J. (2000) Scaling and self-similarity in species distributions: Implications for extinction, species richness, abundance, and range. Scaling in biology: Patterns and processes, causes and consequences (ed. by Brown, J. H., West, J. H. and Enquist, B. J.), pp. 325342. Oxford: Oxford University Press.CrossRefGoogle Scholar
Harte, J. & Kinzig, A. P. (1997) On the implications of species–area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417427.Google Scholar
Harte, J., Kinzig, A. P. & Green, J. (1999a) Self-similarity in the distribution and abundance of species. Science, 284, 334336.CrossRefGoogle ScholarPubMed
Harte, J., McCarthy, S., Kinzig, A. P. & Fischer, M. L. (1999b) Estimating species–area relationships from plot to landscape scale using species spatial-turnover data. Oikos, 86, 4554.CrossRefGoogle Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368371.CrossRefGoogle ScholarPubMed
He, F. & Hubbell, S. P. (2013) Estimating extinction from species–area relationships: Why the numbers do not add up. Ecology, 94, 19051912.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Keil, P., Storch, D. & Jetz, W. (2015) On the decline of biodiversity due to area loss. Nature Communications, 6, 8837.Google Scholar
Kinzig, A. P. & Harte, J. (2000) Implications of endemics–area relationships for estimates of species extinction. Ecology, 81, 33053311.Google Scholar
Kitzes, J. & Harte, J. (2014) Beyond the species–area relationship: Improving macroecological extinction estimates. Methods in Ecology and Evolution, 5, 18.Google Scholar
Koh, L. P. & Ghazoul, J. (2010) A matrix-calibrated species–area model for predicting biodiversity losses due to land-use change. Conservation Biology, 24, 9941001.Google Scholar
Koh, L. P., Lee, T. M., Sodhi, N. S. & Ghazoul, J. (2010) An overhaul of the species–area approach for predicting biodiversity loss: Incorporating matrix and edge effects. Journal of Applied Ecology, 47, 10631070.Google Scholar
Kunin, W. E. Harte, J., He, F., Hui, C., Jobe, R. T., Ostling, A., Polce, C., Šizling, A., Smith, A. B., Smith, K., Smart, S., Storch, D., Tjørve, E., Ugland, K.-E., Ulrich, W. & Varma, V. (2018) Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Laurance, W. F. (2008) Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biological Conservation, 141, 17311744.Google Scholar
Lomolino, M. V., Riddle, B. R., Whittaker, R. J. & Brown, J. H. (2010) Biogeography, 4th ed. Sunderland, MA: Sinauer Associates.Google Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L. & Hines, J. E. (2006) Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Burlington, MA: Academic Press.Google Scholar
Maes, D. & Van Dyck, H. (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biological Conservation, 99, 263276.Google Scholar
Martins, I. S. & Pereira, H. M. (2017) Improving extinction projections across scales and habitats using the countryside species–area relationship. Scientific Reports, 7, 12899.Google Scholar
Matthews, T. J. & Aspin, T. (2019) Model averaging fails to improve the extrapolation capability of the island species–area relationship. Journal of Biogeography, 46, 15581568.Google Scholar
Matthews, T. J., Cottee-Jones, H. E. & Whittaker, R. J. (2014b) Habitat fragmentation and the species–area relationship: A focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity and Distributions, 20, 11361146.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
Matthews, T. J., Steinbauer, M. J., Tzirkalli, E., Triantis, K. A. & Whittaker, R. J. (2014a) Thresholds and the species–area relationship: A synthetic analysis of habitat island datasets. Journal of Biogeography, 41, 10181028.Google Scholar
May, R. M. (1975) Patterns of species abundance and diversity. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 81120. Cambridge MA: Harvard University Press.Google Scholar
May, R. M., Lawton, J. H. & Stork, N. E. (1995) Assessing extinction rates. Extinction rates (ed. by Lawton, J. H. and May, R. M.), pp. 124. Oxford: Oxford University Press.Google Scholar
Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 509, 213217.Google Scholar
Moczek, A. P. (2010) Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 593603.Google Scholar
Ney-Nifle, M. & Mangel, M. (1999) Species–area curves based on geographic range and occupancy. Journal of Theoretical Biology, 196, 327342.Google Scholar
Ney-Nifle, M. & Mangel, M. (2000) Habitat loss and changes in the species–area relationship. Conservation Biology, 14, 893898.Google Scholar
Palmer, M. W. & White, P. S. (1994) Scale dependence and the species–area relationship. The American Naturalist, 144, 717740.Google Scholar
Pereira, H. M. & Daily, G. C. (2006) Modeling biodiversity dynamics in countryside landscapes. Ecology, 87, 18771885.Google Scholar
Pereira, H. M., Borda-de-Água, L. & Martins, I. S. (2012) Geometry and scale in species–area relationships. Nature, 482, E3E4.Google Scholar
Pimm, S. L. (1998) Extinction. Conservation science and action (ed. by Sutherland, W. J.), pp. 2838. Oxford: Blackwell.Google Scholar
Pimm, S. L. & Askins, R. A. (1995) Forest losses predict bird extinction in eastern North America. Proceedings of the National Academy of Sciences USA, 92, 93439347.Google Scholar
Primack, R. B. (2014) Essentials of conservation biology, 6th ed. Oxford: Oxford University Press.Google Scholar
Pullin, A. S. (2002) Conservation biology. Cambridge: Cambridge University Press.Google Scholar
Reid, W. V. & Miller, K. R. (1989) Keeping options alive: The scientific basis for conserving biodiversity. Washington, DC: World Resources Institute.Google Scholar
Riddle, B. R., Ladle, R. J., Lourie, S. A. & Whittaker, R. J. (2011) Basic biogeography: Estimating biodiversity and mapping nature. Conservation biogeography (ed. by Ladle, R. J. and Whittaker, R. J.), pp. 4792. Chichester: Wiley-Blackwell.Google Scholar
Rohr, R. P., Saavedra, S. & Bascompte, J. (2014) On the structural stability of mutualistic systems. Science, 345, 1253497.Google Scholar
Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Schilthuizen, M. (2018) Darwin comes to town: How the urban jungle drives evolution. New York: Picador.Google Scholar
Seabloom, E. W., Dobson, A. P. & Stoms, D. M. (2002) Extinction rates under non-random patterns of habitat loss. Proceedings of the National Academy of Sciences USA, 99, 1122911234.Google Scholar
Smith, A. B. (2010) Caution with curves: Caveats for using the species–area relationship in conservation. Biological Conservation, 143, 555564.CrossRefGoogle Scholar
Storch, D., Keil, P. & Jetz, W. (2012) Universal species–area and endemics–area relationships at continental scales. Nature, 488, 7881.CrossRefGoogle ScholarPubMed
Stork, N. (2010) Re-assessing current extinction rates. Biodiversity and Conservation, 19, 357371.Google Scholar
Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. (1994) Habitat destruction and the extinction debt. Nature, 371, 6566.Google Scholar
Triantis, K. A., Borges, P. A. V., Ladle, R. J., Hortal, J., Cardoso, P., Gaspar, C., Dinis, F., Mendonça, E., Silveira, L. M. A., Gabriel, R., Melo, C., Santos, A. M. C., Amorim, I. R., Ribeiro, S. P., Serrano, A. R. M., Quartau, J. A. & Whittaker, R. J. (2010) Extinction debt on oceanic islands. Ecography, 33, 285294.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Ulrich, W. (2005) Predicting species numbers using species–area and endemics–area relations. Biodiversity and Conservation, 14, 33513362.Google Scholar
Ulrich, W. & Buszko, J. (2003a) Species–area relationship of butterflies in Europe: The simulation of extinction processes reveals different patterns between Northern and Southern Europe. Ecography, 26, 365374.Google Scholar
Ulrich, W. & Buszko, J. (2003b) Self-similarity and the species–area relation of Polish butterflies. Basic and Applied Ecology, 4, 263270.CrossRefGoogle Scholar
Ulrich, W. & Buszko, J. (2004) Habitat reduction and patterns of species loss. Basic and Applied Ecology, 5, 231240.Google Scholar
Ulrich, W. & Buszko, J. (2005) Detecting biodiversity hotspots using species–area and endemics–area relationships: The case of butterflies. Biodiversity and Conservation, 14, 19771988.Google Scholar
Whittaker, R. J. & Matthews, T. J. (2014) The varied form of species–area relationships. Journal of Biogeography, 41, 209210.Google Scholar
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. (2017) Island biogeography: Taking the long view of nature’s laboratories. Science, 357, eaam8326.Google Scholar
Wilsey, B. J., Martin, L. M. & Polley, H. W. (2005) Predicting plant extinction based on species–area curves in prairie fragments with high beta richness. Conservation Biology, 19, 18351841.Google Scholar
Wilson, E. O. (1992) The diversity of life. Cambridge, MA: Belknap Press.Google Scholar
World Conservation Monitoring Centre (1992) Global biodiversity: Status of the Earth’s living resources. London: Chapman and Hall.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×