Published online by Cambridge University Press: 06 January 2010
Abstract
The paper presents a broad general review of the state space approach to time series analysis. It begins with an introduction to the linear Gaussian state space model. Applications to problems in practical time series analysis are considered. The state space approach is briefly compared with the Box–Jenkins approach. The Kalman filter and smoother and the simulation smoother are described. Missing observations, forecasting and initialisation are considered. A representation of a multivariate series as a univariate series is displayed. The construction and maximisation of the likelihood function are discussed. An application to real data is presented. The treatment is extended to non-Gaussian and nonlinear state space models. A simulation technique based on importance sampling is described for analysing these models. The use of antithetic variables in the simulation is considered. Bayesian analysis of the models is developed based on an extension of the importance sampling technique. Classical and Bayesian methods are applied to a real time series.
Introduction to state space models
Basic ideas
The organisers have asked me to provide a broad, general introduction to state space time series analysis. In the pursuit of this objective I will try to make the exposition understandable for those who have relatively little prior knowledge of the subject, while at the same time including some results of recent research. My starting point is the claim that state space models provide an effective basis for practical time series analysis in a wide range of fields including statistics, econometrics and engineering.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.