Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T15:22:32.639Z Has data issue: false hasContentIssue false

10 - Cyclostationary processes

from Part III - Complex random processes

Published online by Cambridge University Press:  25 January 2011

Peter J. Schreier
Affiliation:
University of Newcastle, New South Wales
Louis L. Scharf
Affiliation:
Colorado State University
Get access

Summary

Cyclostationary processes are an important class of nonstationary processes that have periodically varying correlation properties. They can model periodic phenomena occurring in science and technology, including communications (modulation, sampling, and multiplexing), meteorology, oceanography, climatology, astronomy (rotation of the Earth and other planets), and economics (seasonality). While cyclostationarity can manifest itself in statistics of arbitrary order, we will restrict our attention to phenomena in which the second-order correlation and complementary correlation functions are periodic in their global time variable.

Our program for this chapter is as follows. In Section 10.1, we discuss the spectral properties of harmonizable cyclostationary processes. We have seen in Chapter 8 that the second-order averages of a WSS process are characterized by the power spectral density (PSD) and complementary power spectral density (C-PSD). These each correspond to a single δ-ridge (the stationary manifold) in the spectral correlation and complementary spectral correlation. Cyclostationary processes have a (possibly countably infinite) number of so-called cyclic PSDs and C-PSDs. These correspond to δ-ridges in the spectral correlation and complementary spectral correlation that are parallel to the stationary manifold. In Section 10.2, we derive the cyclic PSDs and C-PSDs of linearly modulated digital communication signals. We will see that there are two types of cyclostationarity: one related to the symbol rate, the other to impropriety and carrier modulation.

Because cyclostationary processes are spectrally correlated between different frequencies, they have spectral redundancy. This redundancy can be exploited in optimum estimation.

Type
Chapter
Information
Statistical Signal Processing of Complex-Valued Data
The Theory of Improper and Noncircular Signals
, pp. 250 - 269
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×