Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-09T17:41:25.924Z Has data issue: false hasContentIssue false

4 - Meridional circulation

Published online by Cambridge University Press:  15 August 2009

Jean-Louis Tassoul
Affiliation:
Université de Montréal
Get access

Summary

Introduction

In Section 3.3.1 we noted that the conditions of mechanical and radiative equilibrium are, in general, incompatible in a rotating barotrope. This paradox can be solved in two different ways: Either one makes allowance for a slight departure from barotropy and chooses the angular velocity Ω = Ω(ϖ, z) so that strict radiative equilibrium prevails at every point or one makes allowance for large-scale motions in meridian planes passing through the rotation axis. The first alternative is mainly of academic interest because there is no reason to expect rotating stars to select zero-circulation configurations. Moreover, these baroclinic models are thermally unstable with respect to axisymmetric motions, as well as dynamically unstable with respect to nonaxisymmetric motions (see Sections 3.4 and 3.5). Hence, the slightest disturbance will generate three-dimensional motions and, as a result, a large-scale meridional circulation will commence. The second alternative was independently suggested by Vogt (1925) and Eddington (1925), who pointed out that the breakdown of strict radiative equilibrium in a barotrope tends to set up slight rises in temperature and pressure over some areas of any given level surface and slight falls over other areas. The ensuing pressure gradient between the poles and the equator thereby causes a flow of matter. In fact, it is the small departures from spherical symmetry in a rotating star that lead to unequal heating along the polar and equatorial radii, which in turn causes large-scale currents in meridian planes.

Type
Chapter
Information
Stellar Rotation , pp. 93 - 137
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×