Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: August 2012

Chapter 6 - Eye movement abnormalities

from Section 1 - Clinical manifestations


This chapter discusses the main types of eye movement paralysis resulting from brainstem lesions, and the related pathophysiology. The abnormalities are easily detected at the bedside by studying three main types of eye movements: saccades; smooth pursuit; and the vestibular ocular reflex (VOR). The chapter reviews eye movement disturbances due to cerebellar and cerebral hemispheric lesions, resulting in relatively more subtle syndromes. The stroke-related lesions that most often involve horizontal gaze are located in the cerebral hemispheres and the pons. The hemispheral lesions are most often relatively large hemorrhages or infarcts that include the lateral aspect of the frontal lobe and/or the deep basal ganglia-capsular regions. Outside the brainstem, a number of suprareticular structures, located in the cerebellum and the cerebral hemispheres, control eye movements. Damage to these structures results in saccade and/or smooth pursuit disturbances usually much more subtle than those due to brainstem lesions.

Related content

Powered by UNSILO


1. Pierrot-DeseillignyC.Motor and premotor structures involved in eye movements. In: DaroffRB, NeetensA, eds. Neurological Organization of Ocular Movement. Amsterdam: Kügler-Ghedini, 1990; 259–283.
2. LeighRJ, ZeeDS.The Neurology of Eye Movements. 4th edn. Oxford: Oxford University Press, 2006.
3. UrbanP, CaplanLR.Brainstem disorders. Berlin: Springer, 2011.
4. FrohmanTC, GalettaS, FoxR, et al. The medial longitudinal fasciculus in ocular motor physiology. Neurology 2008; 70: 57–67.
5. ChenCM, LinSH.Wall-eyed bilateral internuclear ophthalmoplegia from lesions at different levels of the brainstem. J Neuroophthalmol 2007; 27: 9–15.
6. ZeeDS, HainTC, CarlJR.Abduction nystagmus in internuclear ophthalmoplegia. Ann Neurol 1987; 21: 383–388.
7. RanalliPJ, SharpeJA.Vertical vestibulo-ocular reflex, smooth pursuit and eye-head tracking dysfunction in internuclear ophthalmoplegia. Brain 1988; 111: 1299–1317.
8. BrandtT, DieterichM.Skew deviation with ocular torsion: a vestibular sign of topographic value. Ann Neurol 1993; 33: 528–534.
9. BrodskyMC, DonahueSP, VaphiadesM, BrandtT.Skew deviation revisited. Surv Ophthalmol 2006; 51: 105–128.
10. KeaneJR.Internuclear ophthalmoplegia: unusual causes in 114 of 410 patients. Arch Neurol 2005; 62: 714.
11. Pierrot-DeseillignyC, GoasguenJ.Isolated abducens nucleus damage due to histocytosis X. Electro-oculographic analysis and physiological deductions. Brain 1984; 107: 1019–1032.
12. MüriRM, ChermannJF, CohenL, et al. Ocular motor consequences of damage to the abducens nucleus area in humans. J Neuroophthalmol 1996; 16: 191–195.
13. HanSB, KimJH, HwangJM.Presumed metastasis of breast cancer to the abducens nucleus presenting as gaze palsy. Korean J Ophthalmol 2010; 24: 186–188.
14. MileaD, NapolitanoN, DechyH, et al. Complete bilateral horizontal gaze paralysis disclosing multiple sclerosis. J Neurol Neurosurg Psychiatry 2001; 70: 252–255.
15. RufaA, CesareA, De SantiL, et al. Impairment of vertical saccades from an acute pontine lesion in multiple sclerosis. J Neuroophthalmol 2008; 28: 305–307.
16. FisherCM.Some neuro-ophthalmological observations. J Neurol Neurosurg Psychiatry 1967; 30: 383–392.
17. Pierrot-DeseillignyC, ChainF, SerdaruM, et al. The ‘one-and-a-half’ syndrome: electro-oculographic analyses of five cases with deduction about the physiologic mechanisms of lateral gaze. Brain 1981; 104: 665–699.
18. Büttner-EnneverJA, BüttnerU.The reticular formation. In: Büttner-EnneverJA, ed. Neuroanatomy of the Oculomotor System. Amsterdam: Elsevier 1988; 119–176.
19. Pierrot-DeseillignyC, GaymardB.Smooth pursuit disorders. In: BrandtT, BüttnerU, eds. Ocular Motor Disorders of the Brain Stem. Baillère's Clinical Neurology. Vol. 1, Issue 2. London: Baillère Tindall, 1992; 435–454.
20. BelknapDB, McCreaRA.Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol 1988; 268: 13–28.
21. CannonSC, RobinsonDA.Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 1987; 57: 1389–1409.
22. KanekoCRS.Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 1997; 78: 1753–1768.
23. SeoSW, ShinHY, KimSH, et al. Vestibular imbalance associated with a lesion in the nucleus prepositus hypoglossi area. Arch Neurol 2004; 61: 1440–1443.
24. ChoHJ, ChoiHY, KimYD, et al. The clinical syndrome and etiological mechanism of infarction involving the nucleus prepositus hypoglossi. Cerebrovasc Dis 2008; 26: 178–183.
25. VuilleumierP, BogousslavskyJ, RegliF.Infarction of the lower brainstem. Clinical, aetiological and MRI: topographical correlations. Brain 1995; 118: 1013–1025.
26. Pierrot-DeseillignyC, ChainF, LhermitteF.Syndrome de la formation réticulaire pontique: précisions physiopathologiques sur les anomalies des mouvements oculaires volontaires. Rev Neurol (Paris) 1982; 138: 517–532.
27. KommerellG, HennV, BachM, LückingCH.Unilateral lesion of the paramedian pontine reticular formation. Neuroophthalmol 1987; 7: 93–98.
28. Pierrot-DeseillignyC, RivaudS, SamsonY, CambonH.Some instructive cases concerning the circuitry of ocular smooth pursuit in the brainstem. Neuroophthalmol 1989; 9: 31–42.
29. Pierrot-DeseillignyC, GoasguenJ, ChainF, LapresleJ.Pontine metastasis with dissociated bilateral horizontal gaze paralysis. J Neurol Neurosurg Psychiatry 1984; 47: 159–164.
30. HansonMR, HamidMA, TomsakRI, et al. Selective saccadic palsy caused by pontine lesions: clinical, physiological and pathological correlations. Ann Neurol 1986; 20: 209–217.
31. MiuraK, OpticanLM.Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. J Comput Neurosci 2006; 20: 25–41.
32. KanekoCRS.Hypothetical explanation of selective saccadic palsy caused by pontine lesion. Neurology 1989; 39: 994–995.
33. Pierrot-DeseillignyC, RosaA, MasmoudiK, RivaudS.Saccade deficits after a unilateral lesion affecting the superior colliculus. J Neurol Neurosurg Psychiatry 1991, 54: 1106–1109.
34. ThierP, BachorA, FaissJ, et al. Selective impairment of smooth pursuit eye movements due to an ischemic lesion of the basal pons. Ann Neurol 1991; 29: 443–448.
35. GaymardB, Pierrot-DeseillignyC, RivaudS, VelutS.Smooth pursuit eye movement disorders after pontine nuclei lesions in man. J Neurol Neurosurg Psychiatry 1993; 56: 799–807.
36. ZackonDH, SharpeJA.Midbrain paresis of horizontal gaze. Ann Neurol 1984; 16: 495–504.
37. Pierrot-DeseillignyC.Brainstem control of horizontal gaze: effect of lesions. In: KennardC, Clifford-RoseF, eds. Physiological Aspects of Clinical Neuro-ophthalmology. London: Chapman and Hall, 1988; 209–235.
38. BogousslavskyJ.Syndromes oculomoteurs résultant de lesions mésencéphaliques chez l'homme. Rev Neurol (Paris) 1989; 145: 546–559.
39. BogousslavskyJ, MaederP, RogliF, MeuliR.Pure midbrain infarction: clinical syndromes, MRI and etiologic patterns. Neurology 1994; 44: 2032–2040.
40. KiazekSM, SlamovitzTL, RosenCE, et al. Fascicular arrangement in partial oculomotor paresis. Am J Ophthalmol 1994; 118: 97–103.
41. SchwartzTH, LycetteCA, YoonSS, KargmanDE.Clinicodariographic evidence for oculomotor fascicular anatomy. J Neurol Neurosurg Psychiatry 1995; 59: 338–334.
42. MartinPJ, ChangH-M, WitykR, CaplanLR.Midbrain infarction: associations and etiologies in the New England Medical Center Posterior Circulation Registry. J Neurol Neurosurg Psychiatry 1998; 64: 392–395.
43. Pierrot-DeseillignyC, SchaisonM, BousserMG, BrunetP.Syndrome nucléaire du nerf moteur oculaire commun: à propos de deux observations cliniques. Rev Neurol (Paris) 1981; 137: 217–222.
44. GuyJR, DayAL, MickleJP, SchatzNY.Contralateral trochlear nerve paresis and ipsilateral Horner's syndrome. Am J Ophthalmol 1989; 107: 73–76.
45. HornAke, Büttner-EnneverJ.Premotor neurons for vertical eye movements in the rostral mesencephalon of monkey and human: histologic identification by parvalbumin immunostaining. J CompNeurol 1988; 392: 413–427.
46. NakaoS, ShiraishiY, LiWB, OikawaT.Mono- and disynaptic excitatory inputs from the superior colliculus to vertical saccade-related neurons in the cat Forel's field H. Exp Brain Res 1990; 82: 222–226.
47. MoschovakisAK, ScudderCA, HighsteinSM.Structure of the primate oculomotor burst generator. I. Medium-lead burst neurons with upward on-directions. J Neurophysiol 1991; 65: 203–217.
48. ChubbMC, FuchsAR.Contribution of y-group of vestibular nuclei and dentate nucleus of cerebellum to generation of vertical smooth eye movements. J Neurophysiol 1982; 48: 75–99.
49. FukushimaK, FukushimaJ, HaradaC, et al. Neuronal activity related to vertical eye movement in the region of interstitial nucleus of Cajal in alert cats. Exp Brain Res 1990; 79: 43–64.
50. Pierrot-DeseillignyC, ChainF, GrayF, et al. Parinaud's syndrome: electro-oculographic and anatomical analysis of six vascular cases with deductions about vertical gaze organization in the premotor structures. Brain 1982; 105: 667–696.
51. CaplanL.Top of the basilar syndrome: selected clinical aspects. Neurology 1980; 30: 72–79.
52. Büttner-EnneverJA, AchesonJF, BüttnerU, et al. Ptosis and supranuclear downgaze paralysis. Neurology 1989; 39: 385–389.
53. BhidayasiriR, PlantGT, LeighRJ.A hypothetical scheme for the brainstem control and vertical gaze. Neurology 2000; 54: 1985–1993.
54. JampelRS, FellsP.Monocular elevation paresis caused by a central nervous system lesion. Arch Ophthalmol 1968; 80: 45–47.
55. LessellS.Supranuclear paralysis of monocular elevation. Neurology 1975; 25: 1134–1136.
56. BogousslavskyJ, RegliF, GhikaJ, HungerbühlerJP.Internuclear ophthalmoplegia, prenuclear paresis of contralateral superior rectus, and bilateral ptosis. J Neurol 1983; 230: 197–203.
57. ViaderF, MassonM, MarionMH, CambierJ.Infarctus cérébral dans le territoire de l'artère choroïdienne antérieure avec trouble oculomoteur. Rev Neurol (Paris) 1984; 140: 668–670.
58. ThömkeF, HopfC.Acquired monocular elevation paresis. Brain 1992; 115: 1901–1910.
59. BogousslavskyJ, RegliF.Upgaze palsy and monocular paresis of downward gaze from ipsilateral thalamo-mesencephalic infarction: a vertical one-and-a-half syndrome. J Neurol 1984; 231: 43–45.
60. DeleuD, SolheidC, MichotteAA, EbingerG.Dissociated ipsilateral horizontal gaze palsy in one-and-a-half syndrome: a clinico-pathologic study. Neurology 1989; 38: 1278–1280.
61. Büttner-EnneverJA, BüttnerU, CohenB, BaumgartnerG.Vertical gaze paralysis and the rostral intersitial nucleus of the medial longitudinal fasciculus. Brain 1982; 105: 125–149.
62. HelmchenC, GlasauerS, BartlK, et al. Contralesionally beating torsional nystagmus in a unilateral rostral midbrain lesion. Neurology 1996; 47: 482–486.
63. BogousslavskyJ, MiklossyJ, RegliF, JanzerR.Vertical gaze palsy and selective unilateral infarction of the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). J Neurol Neurosurg Psychiatry 1990; 53: 67–71.
64. HalmagyiGM, AwT, DehaeneI, CurthoysIS, ToddMJ.Jerk-waveform see-saw nystagmus due to unilateral meso-diencephalic lesion. Brain 1994; 117: 789–803.
65. PapeixC, MileaD, Van EffentereR, et al. “Hemi-seesaw nystagmus”. Rev Neurol (Paris) 2006; 162: 768–769.
66. HelmchenC, RamboldH, FuhryL, BüttnerU.Deficits in vertical and torsional eye movements after uni- and bilateral muscimol inactivation of the interstitial nucleus of Cajal of the alert monkey. Exp Brain Res 1998; 119: 436–452.
67. ToyodaK, HasagawaY, YoneharaT, et al. Bilateral medial medullary infarction with oculomor disorders. Stroke 1992; 23: 1657–1659.
68. Pierrot-DeseillignyC, MileaD.Vertical nystamus: clinical facts and hypotheses. Brain 2005; 128: 1237–1246.
69. Pierrot-DeseillignyC, MileaD, SirmaiJ, et al. Upbeat nystagmus due to a small pontine lesion: evidence for the existence of a crossing ventral tegmental tract. Eur Neurol 2005; 54: 186–190.
70. LeeSC, LeeSH, LeeKY, et al. Transient upbeat nystagmus due to unilateral focal pontine infarction. J Clin Neurosci 2009; 16: 563–565.
71. JanssenJC, LarnerAJ, MorrisH, et al. Upbeat nystagmus: clinicoanatomical correlation. J Neurol Neurosurg Psychiatry 1998; 65: 380–381.
72. SaitoT, AizawaH, SawadaJ, et al. Lesion of the nucleus intercalatus in primary position upbeat nystagmus. Arch Neurol 2010; 67: 1043–1044.
73. Pierrot-DeseillignyC.Effect of gravity on vertical eye position. Ann N Y Acad Sci 2009; 1164: 155–165.
74. DieterichM, BrandtT.Wallenberg's syndrome: lateropulsion, cyclorotation, and subjective visual vertical in thirty-six patients. Ann Neurol 1992; 31: 399–408.
75. ManoN, ItoY, ShibunatiH.Saccade-related Purkinje cells in the cerebellar hemispheres of the monkey. Exp Brain Res 1991; 84: 465–470.
76. BüttnerU, StraubeA.The effect of cerebellar midline lesions on eye movements. Neuroophthalmol 1995; 15: 75–82.
77. SelhorstJB, StarkL, OchsAL, HoytWF.Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria, an oculographic, control system and clinico-anatomical analysis. Brain 1976; 99: 497–508.
78. WestheimerG, BlairSM.Functional organization of primate oculomotor system revealed by cerebellectomy. Exp Brain Res 1974; 21: 463–472.
79. ZeeDS, YamazakiA, ButlerPH, GücerG.Effects of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 1981: 46: 878–899.
80. KellerEL.Cerebellar involvement in smooth pursuit eye movement generation: flocculus and vermis. In: KennardK, RoseFC, eds. Physiological Aspects of Clinical Neuro-ophthalmology. London: Chapman and Hall, 1988; 341–355.
81. BüttnerU.The role of the cerebellum in smooth pursuit eye movements and optokinetic nystagmus in primates. Rev Neurol (Paris) 1989; 145: 560–566.
82. VahediK, RivaudS, AmarencoP, Pierrot-DeseillignyC.Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry 1995; 58: 91–94.
83. StraubeA, ScheuererW, EggertT.Unilateral cerebellar lesions affect initiation of ipsilateral smooth pursuit eye movements in humans. Ann Neurol 1997; 42: 891–898.
84. Pierrot-DeseillignyC, GaymardB, MüriR, RivaudS.Cerebral ocular motor signs. J Neurol 1997; 244: 65–70.
85. FoxPT, FoxJM, RaichleME, BurdeRM.The role of cerebral cortex in the generation of voluntary saccade: a positron emission tomographic study. J Neurophysiol 1985; 54: 348–369.
86. PausT.Location and function of the human frontal eye-field: a selective review. Neuropsychologia 1996; 34: 475–483.
87. MüriRM, Iba-ZizenMT, DerosierC, et al. Location of the human posterior eye field with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 1996; 60: 445–448.
88. SchillerPH, TrueSD, ConwayJL.Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol 1980; 44: 1175–1189.
89. Pierrot-DeseillignyC, GautierJC, LoronP.Acquired ocular motor apraxia due to bilateral fronto-parietal infarcts. Ann Neurol 1988; 23: 199–202.
90. Pierrot-DeseillignyC, RivaudS, GaymardB, AgidY.Cortical control of reflexive visually-guided saccades. Brain 1991; 115: 1473–1485.
91. Pierrot-DeseillignyC, MileaD, MüriRM.Eye movement control by the cerebral cortex. Curr Opin Neurol 2004; 17: 17–25.
92. TijssenCC.Conjugate deviation of the eyes in cerebal lesions. In: DaroffRB, NeetensA, eds. Neurological Organization of Ocular Movement. Amsterdam: Kügler-Ghedini, 1990; 245–258.
93. SullivanHC, KaminskiHJ, MaasEF, et al. Lateral deviation of the eyes on forced lid closure in patients with cerebral lesions. Arch Neurol 1991; 48: 310–311.
94. Pierrot-DeseillignyC, GrayF, BrunetP.Infarcts of both inferior parietal lobules with impairment of visually guided eye movements, peripheral visual inattention and optic ataxia. Brain 1986; 109: 81–97.
95. ThurstonSE, LeighRJ, CrawfordT, et al. Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. Ann Neurol 1988; 23: 266–273.
96. MorrowMJ, SharpeJA.Cerebral hemispheric localization of smooth pursuit asymmetry. Neurology 1990; 40: 284–292.
97. RivaudS, MüriRM, GaymardB, et al. Eye movement disorders after frontal eye field lesions in humans. Exp Brain Res 1994; 102: 110–120.