Published online by Cambridge University Press: 24 October 2009
Introduction
In previous work (Zellner, Hong, and Gulati 1990 and Zellner and Hong 1989), the problem of forecasting turning points in economic time series was formulated and solved in a Bayesian decision theoretic framework. The methodology was applied using a fixed parameter autoregressive, leading indicator (ARLI) model and unpooled data for eighteen countries to forecast turning points over the period 1974–85. In the present chapter, we investigate the extent to which use of exponential weighting, time-varying parameter ARLI models, and pooling techniques leads to improved results in forecasting turning points for the same eighteen countries over a slightly extended period, 1974–86.
The methodology employed in this work has benefited from earlier work of Wecker (1979), Moore and Zarnowitz (1982), Moore (1983), Zarnowitz (1985), and Kling (1987). Just as Wecker and Kling have done, we employ a model for the observations and an explicit definition of a turning point, for example a downturn (DT) or an upturn (UT). Along with Kling, we allow for parameter uncertainty by adopting a Bayesian approach and computing probabilities of a DT or UT given past data from a model's predictive probability density function (pdf) for future observations. Having computed such probabilities from the data, we use them in a decision theoretic framework with given loss structures to obtain optimal turning point forecasts which can readily be computed.
The plan of our chapter is as follows. In section 2, we explain our models and methods. Section 3 is devoted to a description of our data.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.