Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T19:04:36.523Z Has data issue: false hasContentIssue false

2 - Processing of structural nanocrystalline materials

Published online by Cambridge University Press:  04 December 2009

Carl C. Koch
Affiliation:
North Carolina State University
Ilya A. Ovid'ko
Affiliation:
Russian Academy of Sciences, Moscow
Sudipta Seal
Affiliation:
University of Central Florida
Stan Veprek
Affiliation:
Technische Universität München
Get access

Summary

Introduction

Structural nanomaterials are finding applications in bulk materials, films, coatings, and composites. Applications vary from wear-resistance coatings to load-bearing structures. Nanophase or nanocrystalline materials are also being used in electronics, refractory, biological, and catalytic applications. Progress in a wide range of structural applications for nanomaterials crucially depends on the development of new fabrication and processing technologies, along with a fundamental understanding of the relationship between the structure and properties of the feedstock powders and consolidated parts. Among the most important issues discussed here are experimental data, and theoretical and computer models concerning mechanical properties in nanostructured materials, which, in general, are different from the conventional coarse-grained counterparts. The competition between conventional and unusual deformation modes is believed to cause the unique mechanical properties of nanomaterials, serving as a basis for their structural applications. Fabrication of nanomaterials with bimodal (nano- and sub-micro-particles) composites, that exhibit both very high strength and reasonable ductility, represents a promising strategy in the synthesis of nanomaterials with enhanced properties for various structural applications. High strain rate and low-temperature superplasticity of some nanocrystalline materials are the subjects of growing fundamental research efforts motivated by a range of new applications of these super strong and super plastic materials in net shaping technologies.

Structural materials and composites containing at least one phase that is less than 100 nm are often termed as structural nanomaterials/composites (Roy et al., 1986).

Type
Chapter
Information
Structural Nanocrystalline Materials
Fundamentals and Applications
, pp. 25 - 92
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A. W. (1969). J. Colloid Interface Sci., 29, 744.CrossRef
Akashi, K. (1985). Pure & Appl. Chem., 57, 1197.CrossRef
Aliotta, F., Arcoleo, V., Buccoleri, S., Manna, G., and Liveri, V. T. (1995). Thermochim. Acta, 265, 15.CrossRef
Ando, M., Suto, S., Suzuki, T., Tsuchida, T., Nakayama, C., Miura, N., and Yamazoe, N. (1994). J. Mater. Chem., 4, 631.CrossRef
Arcoleo, V., and Liveri, V. T. (1996). Chem. Phys. Lett., 258, 223.CrossRef
Arcoleo, V., Goffredi, M., Liveri, V. T., and Longo, A. (1998). Mater. Sci. Eng., C6, 7.CrossRef
Atzmon, M., Verhoeven, J. D., Gibson, E. D., and Johnson, W. L. (1984) Appl. Phys. Lett., 45, 1052.CrossRef
Bandyopadhyaya, R., Kumar, R., Gandhi, K. S., and Ramkrishna, D. (1997). Langmuir, 13, 3610.CrossRef
Barin, I. (1993). Thermochemical Data of Pure Substances. Weinnheim: VCH – Verlag.Google Scholar
Barnett, S. A. (1993). In Physics of Thin Films Vol. 17: Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 2.
Barnett, S., and Madan, A. (1999). Phys. World, 11, 45.CrossRef
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.CrossRef
Basumallick, A., Biswas, K., Mukherjee, S., and Das, G. C. (1997). Mater. Letters, 30, 363.CrossRef
Battezzati, L., Pappalepore, P., Durbiano, F., and Gallino, I. (1999). Acta Mater., 47, 1901.CrossRef
Behrisch, R. (ed.) (1981). Sputtering by Particle Bombardment I.Berlin: Springer-Verlag.CrossRefGoogle Scholar
Behrisch, R. (ed.) (1983). Sputtering by Particle Bombardment II. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Behrisch, R., and Wittmark, K. (eds.) (1991). Sputtering by Particle Bombardment III. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Belyakov, A., Sakai, T., Miura, H., and Kaibyshev, R. (2000). Phil. Mag. Lett., 80, 711.CrossRef
Benavides, S., Li, Y., and Murr, L. E. (2000). In Ultrafine Grained Materials, ed. Misra, R. S., Semiatin, S. L., Suryanarayana, C., Thadhani, N. N., and Lowe, T. C.Warrendale, PA: TMS, pp. 155–163.Google Scholar
Benjamin, J. S. (1970). Metall. Trans., 1, 2943.
Berkovich, Y., and Garti, N. (1997). Colloids and Surfaces A: Physicochem. Eng. Aspects, 128, 91.CrossRefGoogle Scholar
Beygelzimer, Y., Orlov, D., and Varyukhin, V. (2002) In Ultrafine Grained Materials II, ed. Zhu, Y. T., Langdon, T. G., Misra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C.Warrendale, PA: TMS, p. 297.CrossRefGoogle Scholar
Boakye, E., Radovic, L. R., and Osseo-Asare, K. (1994). J. Colloid Interface Sci., 163, 120.CrossRef
Bockris, J. O. M., and Razumney, G. A. (1967). Fundamental Aspects of Electrocrystallization. NY: Plenum Press, p. 27.CrossRefGoogle Scholar
Bönnemann, H., Brijoux, W., and Joussen, T. (1990). Angew. Chem. Int. Ed. Engl., 29, 273.CrossRef
Bönnemann, H., Brijoux, W., Brinkmann, R., et al. (1994). J. Mol. Catal., 86, 129.CrossRef
Boutonnet, M., Kizling, J., Stenius, P., and Maire, G. (1982). Colloids Surfaces, 5, 209.CrossRef
Brinker, C. J., and Scherer, G. W. (1990). Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing. San Diego: Academic Press Inc.Google Scholar
Brunell, I., Prochazka, J., and Veprek, S. (2005). Unpublished results.
Buhro, W. E., Haber, J. A., Waller, B. E., and Trentler, T. J. (1995). Am. Chem. Soc. Symp., 210, 20.
Cao, X., Koltypin, Y., Kataby, G., Prozorov, R., and Gedanken, A. (1995). J. Mater. Res., 10, 2952.CrossRef
Carnaham, N. F., and Starling, K. E. (1969). J. Chem. Phys., 51, 635.CrossRef
Carvalho, S., Rebouta, L., Ribeiro, E., Vaz, F., Denannot, M. F., Pacaud, J., Riviere, J. P., Paumier, F., Gaboriaud, R. J., and Alves, E. (2004). Surf. Sci. Technol., 177–178, 369.
Chapman, B. (1980). Glow Discharge Processes. New York: John Wiley & Sons.Google Scholar
Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N. (1985). J. Phys. Chem. Data, 14 (Supplement No. 1).
Chatelon, J. P., Terrier, C., and Roger, J. A. (1997). J. Sol–Gel Sci. Technol., 10, 55.CrossRef
Chatterjee, A., and Chakrabarty, D. (1992). J. Mat. Sci., 27, 4115.CrossRef
Chen, D. J., and Mayo, M. J. (1993). NanoStructured Materials, 2, 469.CrossRef
Chew, C. H., Gan, L. M., and Shah, J. D. O. (1990). Disp. Sci. Tech., 11, 593.CrossRef
Cho, Y. S., and Koch, C. C. (1991). Mater. Sci. Eng., A, 141, 139.CrossRef
Choi, S. R., Park, I.-W., Kim, A. H., and Kim, K. H. (2004). Thin Solid Films, 447–448, 371.CrossRef
Chu, X., and Barnett, S. A. (1995). J. Appl. Phys., 77, 4403.CrossRef
Curtins, H. (1995). Surf. Coat. Technol., 76–77, 632.CrossRef
Curtins, H. (2004). European Patent EP 1 392 879 B1.
Danielson, I., and Lindman, B. (1981). Colloids Surfaces, 3, 391.CrossRef
Davis, R. M., and Koch, C. C. (1987). Scripta Metall., 21, 305.CrossRef
Di Meglio, J. M., Dvolaitzky, M., and Taupin, C. (1989). In Progress in Microemulsions, ed. Martellucci, S., and Chester, A. N.New York: Plenum Press, p. 263.CrossRefGoogle Scholar
Dinda, G. P., Rosner, H., and Wilde, G. (2005). Scripta Mater., 52, 577.CrossRef
Diserens, M., Patscheider, J., and Lévy, F. (1998). Surf. Coat. Technol., 108–109, 241.CrossRef
Diserens, M., Patscheider, J., and Lévy, F. (1999). Surf. Coat. Technol., 120–121, 158.CrossRef
Eckert, J., Holzer, J. C., Krill, C. E., and Johnson, W. L. (1992). J. Mater. Res., 7, 1751.CrossRef
Erb, U., Aust, K. T. and Palumbo, G. (2002). In Nanostructured Materials: Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Publishing, p. 179.Google Scholar
Fang, J., Stokes, K. L., Wiemann, J., and Zhou, W. (2000). Mater. Lett., 42, 113.CrossRef
Fang, J., Stokes, K. L., Wiemann, J. A., Zhou, W. L., Dai, J., Chen, F., and O'Connor, C. J. (2001). Mater. Sci. Eng., B83, 254.CrossRef
Fecht, H. J. (2002). In Nanostructured Materials, Processing, Properties, and Applications, ed. Koch, C. C., Norwich, NY: William Andrew Publishing, p. 73.Google Scholar
Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L. (1990). Metall. Trans. A, 21A, 2333.CrossRef
Fegely, B. Jr., White, P., and Bowen, H. K. (1985). J. Am. Ceram. Soc. Bull., 64, 1115.
Fletcher, P. D. I., and Horsup, D. I., (1992). J. Chem. Soc. Faraday Trans., 88, 865.CrossRef
Fletcher, P. D. I., Howe, A. M., and Robinson, B. H. (1987). J. Chem. Soc. Faraday Trans., 83, 185.
Freim, J., McKittrick, J., Katz, J., and Sickafus, K., (1994). NanoStructured Mater., 4, 371–385.CrossRef
Galatsis, K., Li, Y. X., Wlodarski, W., Conini, E., Faglia, G., and Sberveglieri, G. (2001). Sensors and Actuators B, 77, 472.CrossRef
Ghosh, A. K., and Huang, W. (2000). In Ultrafine Grained Materials, ed. Misra, R. S., Semiatin, S. L., Suryanarayana, C., Thadhani, N. N., and Lowe, T. C.Warrendale, PA: TMS, p. 173.Google Scholar
Girshick, S. L., Heberlein, J. V. R., McMurry, P. H., Geberich, W. W., Irdonoglou, D. I., Rao, N. P., Godwani, A., Tymiak, N., Di Fonzo, F., Fan, M. H., and Neumann, D. (2002). In Innovative Processing of Thin Films and Nanocrystalline Powders, ed. Choy, K. L.London: Imperial College Press, p. 165.CrossRefGoogle Scholar
Gleiter, H. (1989). Progress in Materials Science, 33, 233.CrossRef
Gonsalves, K. E., and Rangarajan, S. P. (1997). In Chemistry and Physics of Nanostructures and Related Non-Equilibrium Material, ed. Ma, E., Fultz, B., Shull, R., Morall, J., and Nash, P., p. 149. TMS Meeting, Orlando, Fl.
Granqvist, C. G., and Buhrman, R. A. (1976). J. Appl. Phys., 47, 2200.CrossRef
Groza, J. R. (1999). NanoStructured Materials, 12, 987.CrossRef
Groza, J. R. (2002). In Nanostructured Materials, Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Publishing, p. 115.Google Scholar
Groza, J. R., and Dowding, R. J. (1996). NanoStructured Materials, 7, 749.CrossRef
Hafiz, J., Wang, X., Mukherjee, R., Mook, W., Perrey, C. R., Deneen, J., Herberlein, J. V. R., McMurry, P. H., Gerberich, W. W., Carter, C. B., and Girshick, S. L. (2005). Surf. Coat. Technol., 188–189, 364.
Harris, A. M., Schaffer, G. B., and Page, N. W. (1993). In 2nd Inter. Conf. Mech. Alloying for Structural Applications, ed. Barbadillo, J. J., Froes, F. H., and Schwarz, R., ASM Materials Park, OH, p. 15.Google Scholar
He, J., and Lavernia, E. J. (2001). J. Mater. Res., 16, 2724.CrossRef
Heberlein, J. (2002). Pure & Appl. Chem., 74, 327.CrossRef
Hirai, T., and Hayashi, S. (1982). J. Mater. Sci., 17, 1320.CrossRef
Hirai, T., and Hayashi, S. (1983). J. Mater. Sci., 18, 2401.CrossRef
Hirai, T., Sato, H., and Komasawa, I. (1993). Ind. Eng. Chem. Res, 32, 3014.CrossRef
Hoar, T. P., and Schulman, J. H. (1943). Nature, 152, 102.CrossRef
Holleck, H. (1986). J. Vac. Sci. Technol., A 4, 2661.CrossRef
Holubar, P., Jilek, M., and Sima, M. (2000). Surf. Coat. Technol., 133–134, 145.CrossRef
Hou, M. J., Kim, M., and Shah, D. O. (1988). J. Colloid Interface Sci., 123, 398.CrossRef
Hu, X., Han, Z., Li, G., and Gu, M. (2002). J. Vac. Sci. Technol., A 20, 1921.CrossRef
Huang, Y. J., Zhu, Y. T., Jiang, H., and Lowe, T. C. (2001). Acta Mater., 49, 1497.CrossRef
Ingelsten, H. H., Bagwe, R., Palmqvist, A., Skoglundh, M., Svonberg, C., Holmberg, K., and Shah, D. O. (2001). J. Colloid Interface Sci., 241, 104.CrossRef
Jean, J. H., and Ring, T. A. (1986). J. Am. Ceram. Soc. Bull., 65, 1574.
Jean, J. H., and Ring, T. A. (1988). Colloids and Surfaces, 29, 273.CrossRef
Jilek, M., Cselle, T., Holubar, P., Morstein, M., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Plasma Chem. Plasma Process, 24, 493.CrossRef
Kayser, F., and Cohen, M. (1952). Metal. Progr., 61, 79.
Kegel, W. K., Theo, J., Overbeek, G., and Lekkerkerker, N. W. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P ., and Mittal, K. L., New York: Marcel Dekker, p. 13.Google Scholar
Kim, S. H., Kim, J. K., and Kim, K. H. (2002). Thin Solid Films, 420–421, 360.CrossRef
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976). Introduction to Ceramics, 2nd edition. New York: Wiley, p. 486.Google Scholar
Klassen, T., Oehring, M., and Bormann, R. (1994). J. Mater. Res., 9, 47.CrossRef
Koch, C. C. (1991). In Materials Science and Technology, ed. Cahn, R. W., Haasen, P., and Kramer, E. J., vol. 15. Weinheim: VCH, p. 193.Google Scholar
Koch, C. C. (1993). NanoStructured Mater., 2, 109.CrossRef
Koch, C. C., Smith, A. P., Bai, C., Spontak, R. J., and Balik, C. M. (2000). Mater. Sci. Forum, 343–346, 49.CrossRef
Korth, G. E., and Williamson, R. L. (1995). Metall. Mater. Trans., 26A, 2571.CrossRef
Kubo, R. (1962). J. Phys. Soc. Japan, 17, 975.CrossRef
Lalauze, R., Visconte, E., Montanaro, L., and Pijolat, L. (1993). Sensors and Actuators, B13, 241.CrossRef
Lambeth, D. N., Velu, E. M. T., Bellesis, G. H., Lee, L. L., and Laughlin, D. E. (1996). J. Appl. Physics, 79, 4496.CrossRef
Lee, E.-A., and Kim, K. H. (2002). Thin Solid Films, 420–421, 371.CrossRef
Lewis, D., Rayne, R. J., Bender, B. A., Kurihara, L. K., Chow, G. M., Flijlet, A., Kincaid, A., and Bruce, R. (1997). NanoStructured Mater., 9, 97.CrossRef
Li, H., and Ebrahimi, F. (2003). Mater. Sci. Engr., A, 347, 93.CrossRef
Li, S. H., Shi, Y. L., and Peng, H. R. (1992). Plasma Chem. Plasma Process, 12, 287.
Li, Y. X., Ghantasala, M. K., Galatsis, K., and Wlodarski, W. (1999). In Proceedings of SPIE – The International Society for Optical Engineering, 3892, 364.
Licciulli, A., and Mazzarelli, S., (2001). J. Sol–Gel Sci. Technol., 21, 195.CrossRef
Livage, J., Henry, M., and Sanchez, C. (1988). In Progress in Solid State Chemistry, 18, 259.CrossRef
Lopez, T., Gomez, R., Noverao, O., Solis, A. R., Mora, E. S., Castillo, S., Poulain, E., and Magaden, J. M. (1993). J. Catalysis, 141, 114.CrossRef
López-Quintela, M. A., and Rivas, J. (1993). J. Colloid Interface Sci., 158, 446.CrossRef
Luton, M. J., Jayanth, C. S., Disko, M. M., Matras, S., and Vallone, J. (1989). Mat. Res. Soc. Symp. Proc., 132, 79.CrossRef
Mahanty, J., and Ninham, B. W. (1976). Dispersion Forces. New York: Academic Press.Google Scholar
Mates, T. E., and. Ring, T. A. (1987). Colloids and Surfaces, 24, 299.CrossRef
Mayo, M. J. (1996). Int. Mater. Rev., 41, 85.CrossRef
Meldrum, A., Boatner, L. A., and White, C. W. (2001). Nuclear Instruments Methods Phys. Res., B, 178, 7.CrossRef
Meng, W. J., Zhang, X. D., Shi, B., Tittsworth, R. C., Rehn, L. E., and Baldo, P. M. (2002). J. Mater. Res., 17, 2628.CrossRef
Misra, R. S., Mukherjee, A. M., and Yamazaki, K. (1996). J. Mater. Res., 11, 1144.CrossRef
Münz, W.-D. (2003). MRS Bulletin, 28, 173.CrossRef
Münz, W.-D., Lewis, D. B., Hovsepian, P. Eh., Schönjahn, C., Ehiasarian, A., and Smith, I. J. (2001). Surf. Eng., 17, 15.CrossRef
Musil, J., Vyskocil, J., and Kadlec, S. (1993). In Physics of Thin Films, Vol. 17, Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 80.Google Scholar
Musil, J. (2000). Surf. Coat. Technol., 125, 322.CrossRef
Myung, H. S., Lee, H. M., Shaginyan, L. R., and Han, J. G. (2003). Surf. Coat. Technol., 163–164, 591.CrossRef
Nagy, J. B. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P., and Mittal, K. L.New York: Marcel Dekker, p. 499.Google Scholar
Nagpal, V., Davis, R., and Riffle, J. (1992). In Polymeric Materials Science and Engineering, vol. 67. Washington DC: ACS, Books and Journal Division, p. 235.Google Scholar
Natarajan, U., Handique, K., Mehra, A., Bellare, J. R., and Khilar, K. C. (1996). Langmuir, 12, 2670.CrossRef
Neilson, F. (1982). Manufacturing Chemist, 53, 38.
Niihara, K. (1991). J. Ceram. Soc. Japan, 99, 974.CrossRef
Connor, O' C. J., Seip, C. T., Carpenter, E. E., Li, S., and John, V. T. (1999). NanoStructured Mater., 12, 65.CrossRef
Oleszak, D., and Shingu, P. H. (1996). J. Appl. Phys., 79, 2975.CrossRef
Osseo-Asare, K. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P., and Mittal, K. L.New York: Marcel Dekker, p. 549.Google Scholar
Özkar, S., Ozin, G. A., and Prokopowicz, R. A. (1992). Chem. Mater., 4, 1380.CrossRef
Papp, S., and Dékány, I. (2001). Colloid Polymer Sci., 279, 449.CrossRef
Park, J.-J. and Shin, D. H. (2002). In Ultrafine Grained Materials II, ed. Zhu, Y. T., Langdon, T. G., Misra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C.Warrendale, PA: TMS, p. 253.CrossRefGoogle Scholar
Pathak, D. K. (1995). Ph.D. Thesis, North Carolina State University.
Patil, S., Kuiry, S. C., Seal, S., and Vanfleet, R. (2002). J. Nanoparticles Res., 4, 433.CrossRef
Patscheider, J., Li, S. Z., and Veprek, S. (1996). Plasma Chem. Plasma Process., 16, 341.CrossRef
Patscheider, J., Zehnder, T, and Diserens, M. (2001). Surf. Coat. Technol., 146–147, 201.CrossRef
Pavlov, V. A. (1985). Phys. Met. Metall., 59, 1.
Perez, R. J., Huang, B., and Lavernia, E. J. (1996). NanoStructured Mater., 7, 565.CrossRef
Pfender, E. (1985). Pure & Appl. Chem., 57, 1179.CrossRef
Pierre, A. C. (1991). Ceramic Bull., 70, 1281.
Pillai, V., and Shah, D. O. (1996). J. Mag. Magn. Mater., 163, 243.CrossRef
Pillai, V., Kumar, P., Multani, M. S., and Shah, D. O. (1993). Colloids and Surfaces A: Physicochemical Eng. Aspects, 80, 69.CrossRef
Porta, F., Prati, L., Rossi, M., and Scarý, G. (2002). Colloids and Surfaces A: Physicochem. Eng. Aspects, 211, 43.CrossRefGoogle Scholar
Prince, L. M. (1977). In Microemulsions Theory and Practice, ed. Prince, L. M.New York: Academic Press.Google Scholar
Prochazka, J., Karvankova, P., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Mater. Sci. Eng., A, 384, 102.CrossRef
Puippe, J. Cl. (1986). In Theory and Practice of Pulse Plating, ed. Puippe, J. Cl., and Leaman, F.Orlando, FL: AESF, p. 1.Google Scholar
Qi, L., Ma, J., and Shen, J. (1997). J. Colloid Interface Sci., 186, 498.CrossRef
Qiu, S., Dong, J., and Chen, G. (1999). J. Colloid Interface Sci., 216, 230.CrossRef
Rack, H. J., and Cohen, M. (1970). Mater. Sci. and Eng., 6, 320.CrossRef
Rao, C. N. R. (1993). Mat. Sci. Eng., B, 18, 1.
Real, M. W. (1986). Proc. Br. Ceram. Soc., 38, 59.
Riedel, R., Kleebe, H. J., Schonfelder, H., and Aldinger, F. (1995). Nature, 374, 526.CrossRef
Risbud, S. H., Shan, C.-H., and Mukherjee, A. K. (1995). J. Mater. Res., 10, 237.CrossRef
Rivas, J., Lopez-Quintela, M. A., Lopez, J. A., Liz, L., and Duro, R. J. (1993). IEEE Trans. Magnetics, 29, 2655.CrossRef
Rogl, P., and Schuster, J. C. (1992). Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems. Materials Park, Ohio: ASM The Materials Society.Google Scholar
Roy, R., Roy, R. A., and Roy, D. M. (1986). Mater. Letters, 4, 323.CrossRef
Roy, S., Das, D., Chakrabarty, D., and Agarwal, D. C. (1993). J. Appl. Physics, 74, 4746.CrossRef
Ruckenstein, E. (1989). In Progress in Microemulsions, ed. Martellucci, S., and Chester, A. N.New York: Plenum Press, p. 3.CrossRefGoogle Scholar
Ruckenstein, E. (1999). In Handbook of Microemulsion Science and Technology, ed. Kumar, P., and Mittal, K. L.New York: Marcel Dekker, p. 45.Google Scholar
Ruckenstein, E., and Chi, J. C. (1975). J. Chem. Soc. Faraday Trans. II, 71, 1690.CrossRef
Saito, H., and Shinoda, K. (1970). J. Colloid Interface Sci., 32, 647.CrossRef
Saito, Y., Utsunomiya, H., Tsuji, N. and Sakai, T. (1999). Acta Mater., 47, 579.CrossRef
Sanders, P. G., Youngdahl, C. J., and Weertman, J. R. (1997). Mater. Sci. Eng. A, 234–236, 77.CrossRef
Sayce, I. G. (1975). Pure & Appl. Chem., 48, 215.CrossRef
Segal, V. M., Reznikov, V. I., Drobyshevkij, A. E., and Kopylov, V. I. (1981). Metally, 1, 115.
Sekino, T., Nakajima, T., and Niihara, K. (1996). Mater. Letters, 29, 165.CrossRef
Shaw, W. J. D. (1998). Mater. Sci. Forum, 269–272, 19.CrossRef
Shen, T. D., and Koch, C. C. (1995). Mater. Sci. Forum, 179–181, 17.CrossRef
Shen, T. D., and Koch, C. C. (1996). Acta Mater., 44, 753.CrossRef
Shingu, P. H., Ishihara, K. N., Uenishi, K., Kuyama, J., Huang, B., and Nasu, S. (1990). In Solid State Powder Processing, ed. Clauer, A. H., and Barbadillo, J. J.Warrendale, PA: TMS, p. 21.Google Scholar
Shukla, S., Seal., S., and Mishra, S. (2002). J. Sol–Gel Sci. Technol., 23, 151.CrossRef
Shukla S. V., and Seal, S. (2004). In Encyclopedia of Nanoscience and Nanotechnology, vol. 10, ed. Nalwa, H. S.San Diego, CA: Academic Press, p. 27.Google Scholar
Siegel, R. W. (1991). In Materials Science and Technology, ed. Cahn, R. W., Haasen, P., and Kramer, E. J., vol. 15. Weinheim: VCH, p. 583.Google Scholar
Siegel, R. W., and Eastman, J. A. (1989). Mater. Res. Soc. Symp. Proc., 209, 3.
Skandan, G., Hahn, H., Kear, B. H., Reddy, M., and Cannon, W. R. (1994). Mater. Letters, 20, 305.CrossRef
Skandan, G. (1995). NanoStructured Mater., 5, 111.CrossRef
Smith, A. P., Ade, H., Balik, C. M., Koch, C. C., Smith, S. D., and Spontak, R. J. (2000). Macromolecules, 33, 2595.CrossRef
Solans, C., Pons, R., and Kunieda, H. (1997). In Industrial Applications of Microemulsions, ed. Solans, C., and Kunieda, H.New York: Marcel Dekker Inc.Google Scholar
Sternitzke, M. (1997). J. Euro. Ceramic Society, 17, 1061.CrossRef
Suryanarayana, C. (2001). Progress in Mater. Sci., 46, 1.CrossRef
Suryanarayana, C. (2004). Mechanical Alloying and Milling. New York: Marcel Dekker, Inc.CrossRefGoogle Scholar
Tan, G. L., and Wu, X. (1998). Thin Solid Films, 330, 59.CrossRef
Tao, N. R., Sui, M. L., Lu, J., and Lu, K. (1999). NanoStructured Mater., 11, 433.CrossRef
Tholen, A. R. (1979). Acta Metall., 27, 1765.CrossRef
Thompson, A. W. (1977). Metall. Trans. A, 8A, 833.CrossRef
Thornton, J. A., and Greene, J. E. (1994). In Handbook of Deposition Technologies for Films and Coatings, 2nd edition, ed. Bunshah, R. F.Park Ridge: Noyes Publ., p. 249.Google Scholar
Tojo, C., Blanco, M. C., and López-Quintela, M. A. (1997). Langmuir, 13, 4527.CrossRef
Tojo, C., Blanco, M. C., and López-Quintela, M. A. (1998). J. Non-Crystalline Solids, 235, 688.CrossRef
Traversa, E. (1995). J. Intelligent Materials Systems and Structures, 6, 860.CrossRef
Trudeau, M. L., Schultz, R., Zaluski, L., Hosatte, S., Ryan, D. H., Doner, C. B., Tessier, P., Strom-Olsen, J. O., and Neste, A. (1992). Mater. Sci. Forum, 88–90, 537.CrossRef
Ueji, R., Tsuji, N., Minamino, Y., Koizumi, Y., and Saito, Y. (2002). In Ultrafine Grained Materials II, ed. Zhu, Y. T., Langdon, T. G., Misra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C.Warrendale, PA: TMS, pp. 399–408.CrossRefGoogle Scholar
Uyeda, R. (1991). Progress in Mater. Sci., 35, 1–96.CrossRef
Valiahmetov, O. R., Galeyev, R. M., and Salishchev, G. A. (1990). Fiz. Metall. Metalloved, 10, 204.
Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. (2000). Prog. Mater. Sci., 45, 103.CrossRef
Vaz, F., Rebouta, L., Ramos, S., Silva, da M. F., and Soares, J. C. (1998). Surf. Coat. Technol., 108–109, 236.CrossRef
Vaz, F., Rebouta, L., Almeida, B., Goudeau, P., Pacaud, J., Riviere, J. P., and Bessa e Sousa, J. (1999). Surf. Coat. Technol., 120–121, 166.CrossRef
Vaz, F., Rebouta, L., Goudeau, P., Pacaud, J., Garem, H., Riviere, J. P., Cavaleiro, A., and Alves, E. (2000). Surf. Coat. Technol., 133–134, 307.CrossRef
Vaz, F., Rebouta, L., Goudeau, Ph., Giraadeau, T., Pacaud, J., Riviere, J. P., and Traverse, A. (2001). Surf. Coat. Technol., 146–147, 274.CrossRef
Vaz, F., Carvalho, S., Rebouta, L., Silva, M. Z., Paúl, A., and Schneider, D. (2002). Surf. Coat. Technol., 408, 160.
Veprek, S. (1972). J. Crystal Growth, 17, 101.CrossRef
Veprek, S. (1980). In Current Topics in Materials Science, Vol. 4, ed. Kaldis, E . Amsterdam: North-Holland, p. 151.Google Scholar
Veprek, S. (1982). Pure & Appl. Chem., 54, 1197.CrossRef
Veprek, S. (1983). Thin Solid Films, 130, 135.CrossRef
Veprek, S. (1999). J. Vac. Sci. Technol., A 17, 2401.CrossRef
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.CrossRef
Veprek, S., Brendel, C., and Schäfer, H. (1971). J. Crystal Growth, 9, 266.CrossRef
Veprek, S., Niederhofer, A., Moto, K., Bolon, T., Männling, H.-D., Nesladek, P., Dollinger, G., and Bergmaier, A. (2000). Surf. Coat. Technol., 133–134, 152.CrossRef
Veprek, S., Männling, H.-D., Niederhofer, A., Ma, D., and Mukherjee, S. (2004). J. Vac. Sci. Technol., B 22, L5.CrossRef
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1.CrossRef
Veprek, S., Karvankova, P., and Veprek-Heijman, M. G. J., (2005b). J. Vac. Sci. Technol., B 23, L 17.CrossRef
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2006). Surf. Coat. Technol., 200 (12–13), 3876.CrossRef
Voevodin, A. A., Schneider, J. M., Rebholz, C., and Matthews, A. (1996a). Tribology Int., 29, 559.CrossRef
Voevodin, A. A., Capano, M. A., Safriet, A. J., Donley, M. S., and Zabinski, J. S. (1996b). Appl. Phys. Lett., 69, 188.CrossRef
Voevodin., A. A., and Zabinski, J. S. (2000). Thin Solid Films, 370, 223.CrossRef
Wagner, C. (1976). Colloid Polym. Sci., 254, 400.CrossRef
Wagner, J. J., and Veprek, S. (1982). Plasma Chem. Plasma Process., 2, 95.CrossRef
Wang, J. P., Han, D., Luo, H. L., Lu, Q. X., and Sun, Y. W. (1995). Appl. Phys., A, 61, 407.CrossRef
Wang, Y., Chen, M., Zhou, F., and Ma, E. (2002). Nature, 419, 912.CrossRef
Whittenberger, J. D., Arzt, E., and Luton, M. J. (1990). J. Mater. Res., 5, 271.CrossRef
Wu, Z., Benfield, R. E., Guo, L., Li, H., Yang, Q., Grandjean, D., Li, Q., and Zhu, H. (2001). J. Phys. Condens. Matter, 13, 5269.CrossRef
Yamada, K., and Koch, C. C. (1993). J. Mater. Res., 8, 1317.CrossRef
Youssef, K. M. (2003). Ph.D. thesis, North Carolina State University.
Zeng, D., and Hampden-Smith, M. J. (1993). Chem. Mater., 5, 681.CrossRef
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng. A, 424, (1–2), 128.CrossRef
Zhang, X., and Koch, C. C. (2000). In Ultrafine Grained Materials, ed. Mishra, R. S., Semiatin, S. L., Suryanarayana, C., Thadhani, N. N., and Lowe, T. C.Warrendale, PA: TMS, p. 289.Google Scholar
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., and Koch, C. C. (2002a). Acta Mater., 50, 3995.CrossRef
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., Koch, C. C., Sergueeva, A. V., and Mukherjee, A. K. (2002b). Acta Mater., 50, 4823.CrossRef
Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., and Koch, C. C. (2003). Mater. Sci. Eng. A, A, 344, 175.CrossRef
Zhitomirsky, I., Petric, A., and Niewczas, M. (2002). JOM-J. of the Minerals Metals & Materials Soc., 54, 31.CrossRef
Zhu, W., Deng, J., Tan, O. K., and Chen, X. (2002). Key Engineering Materials, 214–215, 183.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×