Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Physics of extraordinary transmission through subwavelength hole arrays
- 2 Resonant optical properties of nanoporous metal surfaces
- 3 Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles
- 4 Chirality and anisotropy of planar metamaterials
- 5 Novel optical devices using negative refraction of light by periodically corrugated surfaces
- 6 Transformation of optical fields by structured surfaces
- 7 Surface electromagnetic waves on structured perfectly conducting surfaces
- 8 Negative refraction using plasmonic structures that are atomically flat
- 9 Anomalous transmission in waveguides with correlated disorder in surface profiles
- 10 Cloaking
- 11 Linear and nonlinear phenomena with resonating surface polariton waves and their applications
- Index
- Plate section
Preface
Published online by Cambridge University Press: 01 June 2011
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Physics of extraordinary transmission through subwavelength hole arrays
- 2 Resonant optical properties of nanoporous metal surfaces
- 3 Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles
- 4 Chirality and anisotropy of planar metamaterials
- 5 Novel optical devices using negative refraction of light by periodically corrugated surfaces
- 6 Transformation of optical fields by structured surfaces
- 7 Surface electromagnetic waves on structured perfectly conducting surfaces
- 8 Negative refraction using plasmonic structures that are atomically flat
- 9 Anomalous transmission in waveguides with correlated disorder in surface profiles
- 10 Cloaking
- 11 Linear and nonlinear phenomena with resonating surface polariton waves and their applications
- Index
- Plate section
Summary
If a metamaterial can be defined as a deliberately structured material that possesses physical properties that are not possible in naturally occurring materials, then deliberately structured surfaces that possess desirable optical properties that planar surfaces do not posses can surely be considered to be optical metamaterials. The surface structures displaying these properties can be periodic, deterministic but not periodic, or random.
In recent years interest has arisen in optical science in the study of such surfaces and the optical phenomena to which they give rise. A wide variety of these phenomena have been predicted theoretically and observed experimentally. They can be divided roughly into those in which volume electromagnetic waves participate and those in which surface electromagnetic waves participate. Both types of optical phenomena and the surface structures that produce them are described in this volume.
The first several chapters are devoted to optical interactions of volume electromagnetic waves with structured surfaces. One of the earliest examples of a structured surface that acts as an optical metamaterial, and the one that today is perhaps the best known and most widely studied, is a metal film pierced by a two-dimensional periodic array of holes with subwavelength diameters. It was shown experimentally by Ebbesen et al. [1] that the transmission of p-polarized light through this structure can be extraordinarily high at the wavelengths of the surface plasmon polaritons supported by the film.
- Type
- Chapter
- Information
- Structured Surfaces as Optical Metamaterials , pp. xvii - xxiiPublisher: Cambridge University PressPrint publication year: 2011