Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T13:37:59.821Z Has data issue: false hasContentIssue false

5 - Canonical transformations; Poisson brackets

Published online by Cambridge University Press:  05 June 2014

Patrick Hamill
Affiliation:
San José State University, California
Get access

Summary

In this chapter we begin by considering canonical transformations. These are transformations that preserve the form of Hamilton's equations. This is followed by a study of Poisson brackets, an important tool for studying canonical transformations. Finally we consider infinitesimal canonical transformations and, as an example, we look at angular momentum in terms of Poisson brackets.

Integrating the equations of motion

In our study of analytical mechanics we have seen that the variational principle leads to two different sets of equations of motion. The first set consists of the Lagrange equations and the second set consists of Hamilton's canonical equations. Lagrange's equations are a set of n coupled second-order differential equations and Hamilton's equations are a set of 2n coupled first-order differential equations.

The ultimate goal of any dynamical theory is to obtain a general solution for the equations of motion. In Lagrangian dynamics this requires integrating the equations of motion twice. This is often quite difficult because the Lagrangian (and hence the equations of motion) depends not only on the coordinates but also on their derivatives (the velocities). There is no known general method for integrating these equations. You might wonder if it is possible to transform to a new set of coordinates in which the equations of motion are simpler and easier to integrate. Indeed, this is possible in some situations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×