Crossref Citations
This chapter has been
cited by the following publications. This list is generated based on data provided by CrossRef.
Aichholzer, Oswin
and
Aurenhammer, Franz
1996.
Classifying Hyperplanes in Hypercubes.
SIAM Journal on Discrete Mathematics,
Vol. 9,
Issue. 2,
p.
225.
Zhang, Huajie
and
Ling, Charles X.
2001.
Machine Learning: ECML 2001.
Vol. 2167,
Issue. ,
p.
587.
O'Donnell, R.
and
Servedio, R.A.
2003.
Extremal properties of polynomial threshold functions.
p.
3.
Basu, S.
Bhatnagar, N.
Gopalan, P.
and
Lipton, R.J.
2004.
Polynomials that sign represent parity and descartes rule of signs.
p.
223.
Klivans, Adam R.
and
Servedio, Rocco A.
2004.
Learning Theory.
Vol. 3120,
Issue. ,
p.
348.
Klivans, Adam R.
and
Sherstov, Alexander A.
2006.
Learning Theory.
Vol. 4005,
Issue. ,
p.
335.
Franco, L.
and
Anthony, M.
2006.
The influence of oppositely classified examples on the generalization complexity of Boolean functions.
IEEE Transactions on Neural Networks,
Vol. 17,
Issue. 3,
p.
578.
Sherstov, Alexander A.
2007.
Halfspace Matrices.
p.
83.
Sherstov, Alexander A.
2009.
The Intersection of Two Halfspaces Has High Threshold Degree.
p.
343.
Podolskii, V. V.
and
Sherstov, A. A.
2010.
A small decrease in the degree of a polynomial with a given sign function can exponentially increase its weight and length.
Mathematical Notes,
Vol. 87,
Issue. 5-6,
p.
860.
O’Donnell, Ryan
and
Servedio, Rocco A.
2010.
New degree bounds for polynomial threshold functions.
Combinatorica,
Vol. 30,
Issue. 3,
p.
327.
Подольский, Владимир Владимирович
Podolskii, Vladimir Vladimirovich
Шерстов, Александр Александрович
and
Sherstov, Aleksander Aleksandrovich
2010.
Небольшое уменьшение степени многочлена с заданной знаковой функцией может экспоненциально увеличить его вес и длину.
Математические заметки,
Vol. 87,
Issue. 6,
p.
885.
Diakonikolas, Ilias
Servedio, Rocco A.
Tan, Li-Yang
and
Wan, Andrew
2010.
A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions.
p.
211.
Podolskii, Vladimir V.
2011.
Degree-uniform lower bound on the weights of polynomials with given sign function.
Proceedings of the Steklov Institute of Mathematics,
Vol. 274,
Issue. 1,
p.
231.
Zou, Yi Ming
2011.
Advances in Neural Networks – ISNN 2011.
Vol. 6677,
Issue. ,
p.
290.
Emamy-K, M. R.
2011.
A geometric connection to threshold logic via cubical lattices.
Annals of Operations Research,
Vol. 188,
Issue. 1,
p.
141.
Podolskii, Vladimir V.
2012.
How the World Computes.
Vol. 7318,
Issue. ,
p.
599.
Hansen, Kristoffer Arnsfelt
and
Podolskii, Vladimir V.
2013.
Mathematical Foundations of Computer Science 2013.
Vol. 8087,
Issue. ,
p.
516.
Sezener, Can Eren
and
Oztop, Erhan
2015.
Minimal Sign Representation of Boolean Functions: Algorithms and Exact Results for Low Dimensions.
Neural Computation,
Vol. 27,
Issue. 8,
p.
1796.
Amano, Kazuyuki
2016.
Language and Automata Theory and Applications.
Vol. 9618,
Issue. ,
p.
259.