Published online by Cambridge University Press: 05 July 2013
Abstract
Complete caps and saturating sets in projective Galois spaces are the geometrical counterpart of linear codes with covering radius 2. The smaller the cap/saturating set, the better the covering properties of the code. In this paper we survey the state of the art of the research on these geometrical objects, with particular emphasis on the recent developments and on the connections with algebraic curves over finite fields.
Introduction
Galois spaces, that is affine and projective spaces of dimension N > 2 defined over a finite (Galois) field Fq, are well known to be rich in nice geometric, combinatorial and group-theoretic properties that have also found wide and relevant applications in several branches of combinatorics, especially to design theory and graph theory, as well as in more practical areas, notably coding theory and cryptography.
The systematic study of Galois spaces was initiated in the late 1950's by the pioneering work of B. Segre [77]. The trilogy [53, 55, 58] covers the general theory of Galois spaces including the study of objects which are linked to linear codes. Typical such objects are plane arcs and their generalizations, especially caps, saturating sets and arcs in higher dimensions, whose code-theoretic counterparts are distinguished types of error-correcting and covering linear codes, such as MDS codes. Their investigation has received a great stimulus from coding theory, especially in the last decades; see the survey papers [56, 57].
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.