Published online by Cambridge University Press: 05 July 2015
Abstract
We discuss some older and a few recent results related to randomly generated groups. Although most of them are of topological and geometric flavour the main aim of this work is to present them in combinatorial settings.
1 Introduction
For the last half of the century the theory of randomly generated discrete structures has established itself as a vital part of combinatorics. Random graphs and hypergraphs and, more generally, combinatorial, algebraic, and geometric structures generated randomly have been used widely not only to provide numerous examples of objects of exotic properties but also as the way of studying and understanding large non-random systems which often can be decomposed into a small number of pseudorandom parts (see, for instance, Tao [37]). However, until recently, in the theory of random structures as known to combinatorialists random groups have not appeared very frequently (one is tempted to say, sporadically) although Gromov's model of the random group has already been introduced in the early eighties. The main reason was, undoubtedly, the fact that the world of combinatorialists seemed to be quite distant from the land of geometers and topologists and, despite many efforts of a few distinguished mathematicians familiar with both territories, combinatorialists did not believe that one can get basic understanding of the subject without much effort. This landscape has dramatically changed over the last few years. Topological combinatorics (or combinatorial topology) has been developing rapidly; many new projects have been started and a substantial number of articles have been published; combinatorialists have started to use topological terminology and more and more topological works are using advanced combinatorial tools. The aim of this article is just to spread the news. So it is not exactly a survey or even an introduction to this quickly evolving area – the reader who looks for this type of work is referred to a somewhat old but still excellent survey of Ollivier ([34], see also [35]) and the recent paper of Kahle [22].
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.