Skip to main content
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This (lowercase (translateProductType product.productType)) has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Conlon, David Dellamonica, Domingos La Fleur, Steven Rödl, Vojtěch and Schacht, Mathias 2017. A Journey Through Discrete Mathematics. p. 357.

    CLEMENS, DENNIS and PERSON, YURY 2016. Minimum Degrees and Codegrees of Ramsey-Minimal 3-Uniform Hypergraphs. Combinatorics, Probability and Computing, Vol. 25, Issue. 06, p. 850.

    ×
  • Print publication year: 2015
  • Online publication date: July 2015

2 - Recent developments in graph Ramsey theory

Summary

Abstract

Given a graph H, the Ramsey number r(H) is the smallest natural number N such that any two-colouring of the edges of KN contains a monochromatic copy of H. The existence of these numbers has been known since 1930 but their quantitative behaviour is still not well understood. Even so, there has been a great deal of recent progress on the study of Ramsey numbers and their variants, spurred on by the many advances across extremal combinatorics. In this survey, we will describe some of this progress.

1 Introduction

In its broadest sense, the term Ramsey theory refers to any mathematical statement which says that a structure of a given kind is guaranteed to contain a large well-organised substructure. There are examples of such statements in many areas, including geometry, number theory, logic and analysis. For example, a key ingredient in the proof of the Bolzano–Weierstrass theorem in real analysis is a lemma showing that any infinite sequence must contain an infinite monotone subsequence.

A classic example from number theory, proved by van der Waerden [212] in 1927, says that if the natural numbers are coloured in any fixed number of colours then one of the colour classes contains arbitrarily long arithmetic progressions. This result has many generalisations. The most famous, due to Szemerédi [206], says that any subset of the natural numbers of positive upper density contains arbitrarily long arithmetic progressions. This result has many generalisations. The most famous, due to Szemerédi [206], says that any subset of the natural numbers of positive upper density contains arbitrarily long arithmetic progressions.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Surveys in Combinatorics 2015
  • Online ISBN: 9781316106853
  • Book DOI: https://doi.org/10.1017/CBO9781316106853
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
[1] M., Ajtai, J., Komlós, and E., Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980), 354–360.
[2] P., Allen, G., Brightwell and J., Skokan, Ramsey-goodness – and otherwise, Combinatorica 33 (2013), 125–160.
[3] N., Alon, J., Balogh, A., Kostochka and W., Samotij, Sizes of induced subgraphs of Ramsey graphs, Combin. Probab. Comput. 18 (2009), 459–476.
[4] N., Alon and M., Krivelevich, Constructive bounds for a Ramsey-type problem, Graphs Combin. 13 (1997), 217–225.
[5] N., Alon, M., Krivelevich and B., Sudakov, Turáan numbers of bipartite graphs and related Ramsey-type questions, Combin. Probab. Comput. 12 (2003), 477–494.
[6] N., Alon, M., Krivelevich and B., Sudakov, Large nearly regular induced subgraphs, SIAM J. Discrete Math. 22 (2008), 1325–1337.
[7] N., Alon, J., Pach, R., Pinchasi, R., Radoičić and M., Sharir, Crossing patterns of semi-algebraic sets, J. Combin. Theory Ser. A 111 (2005), 310–326.
[8] N., Alon, J., Pach and J., Solymosi, Ramsey-type theorems with forbidden subgraphs, Combinatorica 21 (2001), 155–170.
[9] N., Alon and V., Röodl, Sharp bounds for some multicolor Ramsey numbers, Combinatorica 25 (2005), 125–141.
[10] N., Alon, P., Seymour and R., Thomas, A separator theorem for nonplanar graphs, J. Amer. Math. Soc. 3 (1990), 801–808.
[11] N., Alon and J. H., Spencer, The Probabilistic Method, 3rd edition, Wiley, 2007.
[12] M., Balko, J., Cibulka, K., Král and J., Kynčl, Ramsey numbers of ordered graphs, preprint.
[13] J., Balogh, R., Morris and W., Samotij, Independent sets in hypergraphs, to appear in J. Amer. Math. Soc.
[14] B., Barak, A., Rao, R., Shaltiel and A., Wigderson, 2-source dispersers for no(1) entropy, and Ramsey graphs beating the Frankl–Wilson construction, Ann. of Math. 176 (2012), 1483–1543.
[15] J., Beck, An upper bound for diagonal Ramsey numbers, Studia Sci. Math. Hungar. 18 (1983), 401–406.
[16] J., Beck, On size Ramsey number of paths, trees and cycles I, J. Graph Theory 7 (1983), 115–130.
[17] J., Beck, On size Ramsey number of paths, trees and cycles II, in Mathematics of Ramsey theory, Algorithms Combin., Vol. 5, 34–45, Springer, Berlin, 1990.
[18] J., Beck, Achievement games and the probabilistic method, in Combinatorics, Paul Erdőos is Eighty, Vol. 1, 51–78, Bolyai Soc. Math. Stud., Jáanos Bolyai Math. Soc., Budapest, 1993.
[19] E., Berger, K., Choromanski and M., Chudnovsky, Forcing large transitive subtournaments, to appear in J. Combin. Theory Ser. B.
[20] T., Bohman, The triangle-free process, Adv. Math. 221 (2009), 1653–1677.
[21] T., Bohman and P., Keevash, The early evolution of the H-free process, Invent. Math. 181 (2010), 291–336.
[22] T., Bohman and P., Keevash, Dynamic concentration of the trianglefree process, preprint.
[23] B., Bollobás and H. R., Hind, Graphs without large triangle free subgraphs, Discrete Math. 87 (1991), 119–131.
[24] M., Bonamy, N., Bousquet and S., Thomassé, The Erdős–Hajnal conjecture for long holes and anti-holes, preprint.
[25] N., Bousquet, A., Lagoutte and S., Thomassé, The Erdőos–Hajnal conjecture for paths and antipaths, to appear in J. Combin. Theory Ser. B.
[26] S., Brandt, Expanding graphs and Ramsey numbers, available at Freie Universitäat, Berlin preprint server, ftp://ftp.math.fuberlin.de/pub/math/publ/pre/1996/pr-a-96-24.ps.
[27] B., Bukh and B., Sudakov, Induced subgraphs of Ramsey graphs with many distinct degrees, J. Combin. Theory Ser. B 97 (2007), 612–619.
[28] S. A., Burr, Ramsey numbers involving graphs with long suspended paths, J. London Math. Soc. 24 (1981), 405–413.
[29] S. A., Burr, What can we hope to accomplish in generalized Ramsey theory?, Discrete Math. 67 (1987), 215–225.
[30] S. A., Burr and P., Erdős, On the magnitude of generalized Ramsey numbers for graphs, in Infinite and Finite Sets, Vol. 1 (Keszthely, 1973), 214–240, Colloq. Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[31] S. A., Burr and P., Erdős, Generalizations of a Ramsey-theoretic result of Chvátal, J. Graph Theory 7 (1983), 39–51.
[32] S. A., Burr, P., Erdős, R. J., Faudree, C. C., Rousseau and R. H., Schelp, Some complete bipartite graph-tree Ramsey numbers, Ann. Discrete Math. 41 (1989), 79–90.
[33] S. A., Burr, P., Erdős and L., Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976), 167–190.
[34] S. A., Burr and V., Rosta, On the Ramsey multiplicity of graphs – problems and recent results, J. Graph Theory 4 (1980), 347–361.
[35] S., Butler, Induced-universal graphs for graphs with bounded maximum degree, Graphs Combin. 25 (2009), 461–468.
[36] J., Butterfield, T., Grauman, W. B., Kinnersley, K. G., Milans, C., Stocker and D. B., West, On-line Ramsey theory for bounded degree graphs, Electron. J. Combin. 18 (2011), P136.
[37] G., Chen and R. H., Schelp, Graphs with linearly bounded Ramsey numbers, J. Combin. Theory Ser. B 57 (1993), 138–149.
[38] M., Chudnovsky, The Erdőos–Hajnal conjecture – a survey, J. Graph Theory 75 (2014), 178–190.
[39] M., Chudnovsky and S., Safra, The Erdőos–Hajnal conjecture for bullfree graphs, J. Combin. Theory Ser. B 98 (2008), 1301–1310.
[40] M., Chudnovsky and P., Seymour, Excluding paths and antipaths, to appear in Combinatorica.
[41] F., Chung and R. L., Graham, Erdőos on Graphs. His Legacy of Unsolved Problems, A K Peters, Ltd., Wellesley, MA, 1998.
[42] V., Chváatal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977), 93.
[43] V., Chvátal and F., Harary, Generalized Ramsey theory for graphs. III. Small off-diagonal numbers, Pacific J. Math. 41 (1972), 335–345.
[44] V., Chvátal, V., Rödl, E., Szemerédi and W. T., Trotter Jr, The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34 (1983), 239–239.
[45] D., Conlon, A new upper bound for diagonal Ramsey numbers, Ann. of Math. 170 (2009), 941–941.
[46] D., Conlon, Hypergraph packing and sparse bipartite Ramsey numbers, Combin. Probab. Comput. 18 (2009), 913–913.
[47] D., Conlon, On-line Ramsey numbers, SIAM J. Discrete Math. 23 (2009), 1954–1954.
[48] D., Conlon, On the Ramsey multiplicity of complete graphs, Combinatorica 32 (2012), 171–171.
[49] D., Conlon, The Ramsey number of dense graphs, Bull. Lond. Math. Soc. 45 (2013), 483–483.
[50] D., Conlon, J., Fox, C., Lee and B., Sudakov, Ramsey numbers of cubes versus cliques, to appear in Combinatorica.
[51] D., Conlon, J., Fox, C., Lee and B., Sudakov, The Erdős-Gyárfás problem on generalized Ramsey numbers, Proc. Lond. Math. Soc. 110 (2015), 1–1.
[52] D., Conlon, J., Fox, C., Lee and B., Sudakov, On the grid Ramsey problem and related questions, to appear in Int. Math. Res. Not.
[53] D., Conlon, J., Fox, C., Lee and B., Sudakov, Ordered Ramsey numbers, submitted.
[54] D., Conlon, J., Fox and B., Sudakov, Ramsey numbers of sparse hyper-graphs, Random Structures Algorithms 35 (2009), 1–1.
[55] D., Conlon, J., Fox and B., Sudakov, Hypergraph Ramsey numbers, J. Amer. Math. Soc. 23 (2010), 247–247.
[56] D., Conlon, J., Fox and B., Sudakov, An approximate version of Sidorenko's conjecture, Geom.Funct.Anal. 20 (2010), 1354–1354.
[57] D., Conlon, J., Fox and B., Sudakov, Large almost monochromatic subsets in hypergraphs, Israel J. Math. 181 (2011), 423–423.
[58] D., Conlon, J., Fox and B., Sudakov, On two problems in graph Ramsey theory, Combinatorial 32 (2012), 513–513.
[59] D., Conlon, J., Fox and B., Sudakov, Erdős-Hajnal-type theorems in hypergraphs, J. Combin. Theory Ser. B 102 (2012), 1142–1142.
[60] D., Conlon, J., Fox and B., Sudakov, Two extensions of Ramsey's theorem, Duke Math. J. 162 (2013), 2903–2903.
[61] D., Conlon, J., Fox and B., Sudakov, Short proofs of some extremal results, Combin. Probab. Comput. 23 (2014), 8–8.
[62] D., Conlon, J., Fox and B., Sudakov, Short proofs of some extremal results II, in preparation.
[63] D., Conlon, J., Fox and Y., Zhao, Extremal results in sparse pseudo-random graphs, Adv. Math. 256 (2014), 206–206.
[64] D., Conlon and W. T., Gowers, Combinatorial theorems in sparse random sets, submitted.
[65] D., Conlon and W. T., Gowers, An upper bound for Folkman numbers, preprint.
[66] O., Cooley, N., Fountoulakis, D., Kiihn and D., Osthus, 3-uniform hy-pergraphs of bounded degree have linear Ramsey numbers, J. Combin. Theory Ser. B 98 (2008), 484–484.
[67] O., Cooley, N., Fountoulakis, D., Kühn and D., Osthus, Embeddings and Ramsey numbers of sparse k-uniform hypergraphs, Combinatorica 28 (2009), 263–263.
[68] J., Cummings, D. Král', F., Pfender, K., Sperfeld, A., Treglown and M., Young, Monochromatic triangles in three-coloured graphs, J. Combin. Theory Ser. B 103 (2013), 489–489.
[69] D., Dellamonica, The size-Ramsey number of trees, Random Structures Algorithms 40 (2012), 49–49.
[70] W., Deuber, A generalization of Ramsey's theorem, in Infinite and Finite Sets, Vol. 1 (Keszthely, 1973), 323–332, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[71] A., Dudek and D., Mubayi, On generalized Ramsey numbers for 3-uniform hypergraphs, J. Graph Theory 76 (2014), 217–217.
[72] A., Dudek, T., Retter and V., Rödl, On generalized Ramsey numbers of Erdős and Rogers, J. Combin. Theory Ser. B 109 (2014), 213–213.
[73] A., Dudek and V., Rodl, On the Folkman numberf (2, 3, 4), Exp. Math. 17 (2008), 63–63.
[74] A., Dudek and V., Rodl, On Ks-free subgraphs in Ks+k-free graphs and vertex Folkman numbers, Combinatorica 31 (2011), 39–39.
[75] R. A., Duke, H., Lefmann, and V., Riodl, A fast approximation algorithm for computing the frequencies of subgraphs in a given graph, SIAM J. Comput. 24 (1995), 598–598.
[76] N., Eaton, Ramsey numbers for sparse graphs, Discrete Math. 185 (1998), 63–63.
[77] D., Eichhorn and D., Mubayi, Edge-coloring cliques with many colors on subcliques, Combinatorica 20 (2000), 441–441.
[78] P., Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–292.
[79] P., Erdős, Graph theory and probability II, Canad. J. Math. 13 (1961), 346–346.
[80] P., Erdős, On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 459–459.
[81] P., Erdős, Problems and results on finite and infinite graphs, in Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), 183–192, Academia, Prague, 1975.
[82] P., Erdős, Solved and unsolved problems in combinatorics and combinatorial number theory, in Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph Theory and Computing, Vol. I (Baton Rouge, La., 1981), Congr. Numer. 32 (1981), 49–49.
[83] P., Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25–25.
[84] P., Erdős, On some problems in graph theory, combinatorial analysis and combinatorial number theory, in Graph theory and combinatorics (Cambridge, 1983), 1–17, Academic Press, London, 1984.
[85] P., Erdős, Problems and results on graphs and hypergraphs: similar-ities and differences, in Mathematics of Ramsey theory, 12-28, Algorithms Combin., 5, Springer, Berlin, 1990.
[86] P., Erdős, On some of my favourite problems in various branches of combinatorics, in Proceedings of the Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (Prachatice, 1990), 69–79, Ann. Discrete Math., 51, North-Holland, Amsterdam, 1992.
[87] P., Erdős, Problems and results in discrete mathematics, Discrete Math. 136 (1994), 53–53.
[88] P., Erdős, R. J., Faudree, C. C., Rousseau and R. H., Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1978), 145–145.
[89] P., Erdős and R., Graham, On partition theorems for finite graphs, in Infinite and Finite Sets, Vol. 1 (Keszthely, 1973), 515–527, Colloq. Math.Soc.Jaanos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[90] P., Erdős and A., Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997), 459–459.
[91] P., Erdős and A., Hajnal, Research problems 2-3, J. Combin. Theory 2 (1967), 104–104.
[92] P., Erdős and A., Hajnal, On Ramsey like theorems, problems and results, in Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), 123–140, Inst. Math. Appl., Southend-on-Sea, 1972.
[93] P., Erdős and A., Hajnal, On spanned subgraphs of graphs, in Contributions to graph theory and its applications (Internat. Colloq., Oberhof, 1977), 80–96, Tech. Hochschule Ilmenau, Ilmenau, 1977.
[94] P., Erdős and A., Hajnal, Ramsey-type theorems, Discrete Appl. Math. 25 (1989), 37–37.
[95] P., Erdős, A., Hajnal and J., Pach, On a metric generalization of Ram-sey's theorem, Israel J. Math. 102 (1997), 283–283.
[96] P., Erdős, A., Hajnal and J., Pach, A Ramsey-type theorem for bipartite graphs, Geombinatorics 10 (2000), 64–64.
[97] P., Erdős, A., Hajnal and L., Pósa, Strong embeddings of graphs into colored graphs, in Infinite and Finite Sets, Vol. 1 (Keszthely, 1973), 585–595, Colloq. Math. Soc. Jaanos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[98] P., Erdős, A., Hajnal and R., Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93–93.
[99] P., Erdős and R., Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. 3 (1952), 417–417.
[100] P., Erdős and C. A., Rogers, The construction of certain graphs, Canad. J. Math. 14 (1962), 702–702.
[101] P., Erdős and M., Simonovits, Cube-supersaturated graphs and related problems, in Progress in graph theory (Waterloo, Ont., 1982), 203–218, Academic Press, Toronto, ON, 1984.
[102] P., Erdős and G., Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463–463.
[103] P., Erdős and E., Szemeraédi, On a Ramsey type theorem, Period. Math. Hungar. 2 (1972), 295–295.
[104] G., Fiz Pontiveros, S., Griffiths and R., Morris, The triangle-free process and R(3,k), preprint.
[105] G., Fiz Pontiveros, S., Griffiths, R., Morris, D., Saxton and J., Skokan, On the Ramsey number of the triangle and the cube, to appear in Combinatorica.
[106] G., Fiz Pontiveros, S., Griffiths, R., Morris, D., Saxton and J., Skokan, The Ramsey number of the clique and the hypercube, J. Lond. Math. Soc. 89 (2014), 680–680.
[107] J., Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–19.
[108] J., Fox, There exist graphs with super-exponential Ramsey multiplicity constant, J. Graph Theory 57 (2008), 89–89.
[109] J., Fox, A., Grinshpun and J., Pach, The Erdős-Hajnal conjecture for rainbow triangles, J. Combin. Theory Ser. B 111 (2015), 75–75.
[110] J., Fox and J., Pach, Erdős–Hajnal-type results on intersection patterns of geometric objects, in Horizons of combinatorics, 79–103, Bolyai Soc. Math. Stud., 17, Springer, Berlin, 2008.
[111] J., Fox and J., Pach, Applications of a new separator theorem for string graphs, Combin. Probab. Comput. 23 (2014), 66–66.
[112] J., Fox, J., Pach, B., Sudakov and A., Suk, Erdős-Szekeres-type theorems for monotone paths and convex bodies, Proc. Lond. Math. Soc. 105 (2012), 953–953.
[113] J., Fox, J., Pach and Cs. D., Tóth, Intersection patterns of curves, J. Lond. Math. Soc. 83 (2011), 389–389.
[114] J., Fox and B., Sudakov, Induced Ramsey-type theorems, Adv. Math. 219 (2008), 1771–1771.
[115] J., Fox and B., Sudakov, Ramsey-type problem for an almost monochromatic K4, SIAM J. Discrete Math. 23 (2008/09), 155-162.
[116] J., Fox and B., Sudakov, Density theorems for bipartite graphs and related Ramsey-type results, Combinatorica 29 (2009), 153–153.
[117] J., Fox and B., Sudakov, Two remarks on the Burr-Erdős conjecture, European J. Combin. 30 (2009), 1630–1630.
[118] J., Fox and B., Sudakov, Dependent Random Choice, Random Struc-tures Algorithms 38 (2011), 68–68.
[119] P., Frankl and V., Rödl, Large triangle-free subgraphs in graphs with-out K4, Graphs Combin. 2 (1986), 135–135.
[120] P., Frankl and R. M., Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357–357.
[121] E., Friedgut, V., Rödl and M., Schacht, Ramsey properties of discrete random structures, Random Structures Algorithms 37 (2010), 407–407.
[122] J., Friedman and N., Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), 71–71.
[123] C., Godsil and G., Royle, Algebraic Graph Theory, Springer, 2001.
[124] A. W., Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959), 778–778.
[125] W. T., Gowers, A new proof of Szemeraédi's theorem for arithmetic progressions of length four, Geom.Funct.Anal. 8 (1998), 529–529.
[126] W. T., Gowers, Hypergraph regularity and the multidimensional Szemeraedi theorem, Ann. of Math. 166 (2007), 897–897.
[127] R. L., Graham and V., Rödl, Numbers in Ramsey theory, in Surveys in Combinatorics 1987, 111–153, London Math. Soc. Lecture Note Ser., Vol. 123, Cambridge University Press, Cambridge, 1987.
[128] R. L., Graham, V., Rödl and A., Ruciński, On graphs with linear Ramsey numbers, J. Graph Theory 35 (2000), 176–176.
[129] R. L., Graham, V., Rödl and A., Ruciński, On bipartite graphs with linear Ramsey numbers, Combinatorica 21 (2001), 199–199.
[130] R. L., Graham, B. L., Rothschild and J. H., Spencer, Ramsey theory, 2nd edition, Wiley, 1990.
[131] B., Green and T., Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. 167 (2008), 481–481.
[132] J. A., Grytczuk, M., Hałuszczak and H. A., Kierstead, On-line Ramsey theory, Electron. J. Combin. 11 (2004), Research Paper 60, 10pp.
[133] A., Gyárfás, On a Ramsey type problem of Shelah, in Extremal prob-lems for finite sets (Visegrád, 1991), 283–287, Bolyai Soc. Math. Stud., 3, Jaanos Bolyai Math. Soc., Budapest, 1994.
[134] A., Hajnal, Rainbow Ramsey theorems for colorings establishing negative partition relations, Fund. Math. 198 (2008), 255–255.
[135] L., Harrington and J., Paris, A mathematical incompleteness in Peano arithmetic, in Handbook of Mathematical Logic, 1133–1142, North-Holland, Amsterdam, 1977.
[136] H., Hatami, J., Hladký, D. Král', S., Norine and A., Razborov, Non-three-colorable common graphs exist, Combin. Probab. Comput. 21 (2012), 734–734.
[137] P. E., Haxell, Y., Kohayakawa and T., Łuczak, The induced size-Ramsey number of cycles, Combin. Probab. Comput. 4 (1995), 217–217.
[138] P., Horn, K. G., Milans and V., Rödl, Degree Ramsey numbers of closed blowups of trees, Electron. J. Combin. 21 (2014), Paper 2.5, 6pp.
[139] C., Jagger, P., Štovíček and A., Thomason, Multiplicities of subgraphs, Combinatorica 16 (1996), 123–123.
[140] H. A., Kierstead and G., Konjevod, Coloring number and on-line Ramsey theory for graphs and hypergraphs, Combinatorica, 29 (2009), 49–49.
[141] J. H., Kim, The Ramsey number R(3, t) has order of magnitude t2/ log t, Random Structures Algorithms 7 (1995), 173–173.
[142] J. H., Kim, C., Lee and J., Lee, Two approaches to Sidorenko's conjecture, to appear in Trans. Amer. Math. Soc.
[143] W. B., Kinnersley, K. G., Milans and D. B., West, Degree Ramsey numbers of graphs, Combin. Probab. Comput. 21 (2012), 229–229.
[144] Y., Kohayakawa, H., Prömel and V., Rödl, Induced Ramsey numbers, Combinatorica 18 (1998), 373–373.
[145] Y., Kohayakawa, V., Rödl, M., Schacht and E., Szemeraédi, Sparse partition universal graphs for graphs of bounded degree, Adv. Math. 226 (2011), 5041–5041.
[146] A. V., Kostochka and D., Mubayi, When is an almost monochromatic K4 guaranteed?Combin. Probab. Comput. 17 (2008), 823–823.
[147] A. V., Kostochka and V., Rödl, On graphs with small Ramsey numbers, J. Graph Theory 37 (2001), 198–198.
[148] A. V., Kostochka and V., Rödl, On Ramsey numbers of uniform hy-pergraphs with given maximum degree, J. Combin. Theory Ser. A 113 (2006), 1555–1555.
[149] A. V., Kostochka and B., Sudakov, On Ramsey numbers of sparse graphs, Combin. Probab. Comput. 12 (2003), 627–627.
[150] M., Krivelevich, Bounding Ramsey numbers through large deviation inequalities, Random Structures Algorithms 7 (1995), 145–145.
[151] M., Krivelevich and B., Sudakov, Pseudo-random graphs, in More sets, graphs and numbers, 199–262, Bolyai Soc. Math. Stud., 15, Springer, Berlin, 2006.
[152] A., Kurek and A., Ruciński, Two variants of the size Ramsey number, Discuss. Math. Graph Theory 25 (2005), 141–141.
[153] A. R., Lange, S. P., Radziszowski and X., Xu, Use of MAX-CUT for Ramsey arrowing of triangles, J. Combin. Math. Combin. Comput. 88 (2014), 61–61.
[154] D., Larman, J., Matoušek, J., Pach and J., Törőcsik, A Ramsey-type result for convex sets, Bull. London Math. Soc. 26 (1994), 132–132.
[155] J. L. X., Li and B., Szegedy, On the logarithmic calculus and Sidorenko's conjecture, to appear in Combinatorica.
[156] L., Lu, Explicit construction of small Folkman graphs, SIAM J. Discrete Math. 21 (2007), 1053–1053.
[157] T., Łuczak and V., Rödl, On induced Ramsey numbers for graphs with bounded maximum degree, J. Combin. Theory Ser. B 66 (1996), 324–324.
[158] W., Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154–154.
[159] K. G., Milans, D., Stolee and D. B., West, Ordered Ramsey theory and track representations of graphs, to appear in J. Combin.
[160] G., Mills, Ramsey–Paris–Harrington numbers for graphs, J. Combin. Theory Ser. A 38 (1985), 30–30.
[161] G., Moshkovitz and A., Shapira, Ramsey theory, integer partitions and a new proof of the Erdős-Szekeres theorem, Adv. Math. 262 (2014), 1107–1107.
[162] D., Mubayi, Edge-coloring cliques with three colors on all 4-cliques, Combinatorica 18 (1998), 293–293.
[163] B., Nagle, S., Olsen, V., Rödl and M., Schacht, On the Ramsey number of sparse 3-graphs, Graphs Combin. 27 (2008), 205–205.
[164] B., Nagle, V., Rödl and M., Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms 28 (2006), 113–179.
[165] R., Nenadov and A., Steger, A short proof of the random Ramsey theorem, to appear in Combin. Probab. Comput.
[166] J., Nesetril and V., Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Theory Ser. B 20 (1976), 243–243.
[167] J., Nešetřil and V., Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1 (1981), 199–199.
[168] J., Nešetřil and J. A., Väänänen, Combinatorics and quantifiers, Comment. Math. Univ. Carolin. 37 (1996), 433–433.
[169] S., Nieβ, Counting monochromatic copies of K4: a new lower bound for the Ramsey multiplicity problem, preprint.
[170] V., Nikiforov and C. C., Rousseau, Ramsey goodness and beyond, Combinatorica 29 (2009), 227–227.
[171] N., Paul and C., Tardif, The chromatic Ramsey number of odd wheels, J. Graph Theory 69 (2012), 198–198.
[172] H., Prömel and V., Rödl, Non-Ramsey graphs are c log n-universal, J. Combin. Theory Ser. A 88 (1999), 379–379.
[173] S., Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2014), DS1.
[174] F. P., Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–264.
[175] A. A., Razborov, Flag algebras, J. Symbolic Logic 72 (2007), 1239–1282.
[176] V., Rödl, The dimension of a graph and generalized Ramsey theorems, Master's thesis, Charles University, 1973.
[177] V., Rödl, On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), 125–125.
[178] V., Rödl, On homogeneous sets of positive integers, J. Combin. Theory Ser. A 102 (2003), 229–229.
[179] V., Rödl and A., Ruciński, Lower bounds on probability thresholds for Ramsey properties, in Combinatorics, Paul Erdős is eighty, Vol. 1, 317–346, Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest, 1993.
[180] V., Rödl and A., Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917–917.
[181] V., Rödl, A., Ruciński and M., Schacht, An exponential-type upper bound for Folkman numbers, preprint.
[182] V., Rödl and M., Schacht, Complete partite subgraphs in dense hypergraphs, Random Structures Algorithms 41 (2012), 557–557.
[183] V., Rödl and J., Skokan, Regularity lemma for uniform hypergraphs, Random Structures Algorithms 25 (2004), 1–1.
[184] V., Rödl and E., Szemernédi, On size Ramsey numbers of graphs with bounded maximum degree, Combinatorica 20 (2000), 257–257.
[185] V., Rödl and R., Thomas, Arrangeability and clique subdivisions, in The mathematics of Paul Erdős, II, 236–239, Algorithms Combin., 14, Springer, Berlin, 1997.
[186] G. N., Sárkozy and S. M., Selkow, On edge colorings with at least q colors in every subset of p vertices, Electron.J.Combin. 8 (2001), Research Paper 9, 6pp.
[187] G. N., Sárközy and S. M., Selkow, An application of the regularity lemma in generalized Ramsey theory, J. Graph Theory 44 (2003), 39–39.
[188] D., Saxton and A., Thomason, Hypergraph containers, to appear in Invent. Math.
[189] M., Schacht, Extremal results for discrete random structures, preprint.
[190] J., Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983), 83–83.
[191] J., Shearer, On the independence number of sparse graphs, Random Structures Algorithms 7 (1995), 269–269.
[192] S., Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc. 1 (1989), 683–683.
[193] S., Shelah, A finite partition theorem with double exponential bound, in The mathematics of Paul Erdős, II, 240–246, Algorithms Combin., 14, Springer, Berlin, 1997.
[194] L., Shi, Cube Ramsey numbers are polynomial, Random Structures Algorithms 19 (2001), 99–99.
[195] L., Shi, The tail is cut for Ramsey numbers of cubes, Discrete Math. 307 (2007), 290–290.
[196] A. F., Sidorenko, Cycles in graphs and functional inequalities, Math. Notes 46 (1989), 877–877.
[197] A. F., Sidorenko, A correlation inequality for bipartite graphs, Graphs Combin. 9 (1993), 201–201.
[198] J. H., Spencer, Ramsey's theorem – a new lower bound, J. Combin. Theory Ser. A 18 (1975), 108–108.
[199] J. H., Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977/78), 69–76.
[200] J. H., Spencer, Three hundred million points suffice, J. Combin. The-ory Ser. A 49 (1988), 210–210. See also the erratum by M. Hovey in J. Combin. Theory Ser. A 50 (989), 323.
[201] K., Sperfeld, On the minimal monochromatic K4-density, preprint.
[202] B., Sudakov, A few remarks on the Ramsey-Turán-type problems, J. Combin. Theory Ser. B 88 (2003), 99–99.
[203] B., Sudakov, A new lower bound for a Ramsey-type problem, Combinatorica 25 (2005), 487–487.
[204] B., Sudakov, Large Kr-free subgraphs in Ks-free graphs and some other Ramsey-type problems, Random Structures Algorithms 26 (2005), 253–253.
[205] B., Sudakov, A conjecture of Erdős on graph Ramsey numbers, Adv. Math. 227 (2011), 601–601.
[206] E., Szemernédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–199.
[207] E., Szemeredi, Regular partitions of graphs, in Problémes Combinatoires et Théorie des Graphes (Orsay 1976), 399–401, Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
[208] A., Thomason, Pseudorandom graphs, in Random graphs '85 (Poznań, 1985), 307–331, North-Holland Math. Stud., Vol. 144, NorthHolland, Amsterdam, 1987.
[209] A., Thomason, Random graphs, strongly regular graphs and pseudorandom graphs, in Surveys in Combinatorics 1987, 173–195, London Math. Soc. Lecture Note Ser., Vol. 123, Cambridge University Press, Cambridge, 1987.
[210] A., Thomason, An upper bound for some Ramsey numbers, J. Graph Theory 12 (1988), 509–509.
[211] A., Thomason, A disproof of a conjecture of Erdos in Ramsey theory, J. London Math. Soc. 39 (1989), 246–246.
[212] B. L., van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wish. 15 (1927), 212–212.
[213] G., Wolfovitz, K4-free graphs without large induced triangle-free subgraphs, Combinatorica 33 (2013), 623–623.
[214] X., Zhu, The fractional version of Hedetniemi's conjecture is true, European J. Combin. 32 (2011), 1168–1168.