from Part 3 - Finite-state machines
Published online by Cambridge University Press: 05 June 2012
In this chapter we consider the characterization of finite-state machines and the sets of sequences that they accept. We investigate a number of generalized forms of finite-state machines and prove that these forms are equivalent, with respect to the sets of sequences that they accept, to the basic deterministic finite-state model. In Sections 16.2 and 16.3 we study the properties of nondeterministic state diagrams, called transition graphs, which will prove to be a useful tool in the study of regular expressions. Procedures are developed whereby any transition graph can be converted into a deterministic state diagram.
Section 16.4 presents the language of regular expressions, which provides a precise characterization of the sets of sequences accepted by finite-state machines. In the following two sections we prove that any finite-state machine can be characterized by a regular expression and that every regular expression can be realized by a finite-state machine. Finally, in Section 16.7 we will be concerned with a generalized form of finite-state machines known as two-way machines.
Deterministic recognizers
So far, we have regarded a finite-state machine as a transducer that transforms input sequences into output sequences. In this chapter we shall view a machine as a recognizer that classifies input strings into two classes, those that it accepts and those that it rejects. The set consisting of all the strings that a given machine accepts is said to be recognized by that machine.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.