Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-22T10:14:57.684Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 February 2019

Albert Baernstein II
Affiliation:
Washington University, St Louis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D.R. 1988. A sharp inequality of J. Moser for higher order derivatives. Ann. Math. (2), 128(2), 385398.CrossRefGoogle Scholar
Ahlfors, L.V. 1954. On quasiconformal mappings. J. Anal. Math., 3, 158; correction, 207–208.Google Scholar
Ahlfors, L.V. 1966. Lectures on Quasiconformal Mappings. Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10. Toronto, Ontario–New York–London: D. Van Nostrand Co., Inc.Google Scholar
Ahlfors, L.V. 1973. Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. New York: McGraw-Hill Book Co.Google Scholar
Ahlfors, L.V. 1978. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. Third edn. International Series in Pure and Applied Mathematics. New York: McGraw-Hill Book Co.Google Scholar
Ahlfors, L.V. 1981. Möbius Transformations in Several Dimensions. Ordway Professorship Lectures in Mathematics. Minneapolis: University of Minnesota School of Mathematics.Google Scholar
Almgren, Jr., F.J., and Lieb, E.H. 1989. Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc., 2(4), 683773.Google Scholar
Alvino, A., Trombetti, G., and Lions, P.-L. 1990. Comparison results for elliptic and parabolic equations via Schwarz symmetrization. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7(2), 3765.Google Scholar
Alvino, A., Lions, P.-L., and Trombetti, G. 1991. Comparison results for elliptic and parabolic equations via symmetrization: a new approach. Differ. Integr. Equ., 4(1), 2550.Google Scholar
Alvino, A., Trombetti, G., and Matarasso, S. 2002. Elliptic boundary value problems: comparison results via symmetrization. Ricerche Mat., 51(2), 341355.Google Scholar
Anderson, G.D., Vamanamurthy, M.K., and Vuorinen, M.K. 1997. Conformal Invariants, Inequalities, and Quasiconformal Maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. New York: John Wiley & Sons Inc.Google Scholar
Anderson, J.M., and Baernstein, II, A. 1978. The size of the set on which a meromorphic function is large. Proc. London Math. Soc. (3), 36(3), 518539.Google Scholar
Andrews, G.E., Askey, R., and Roy, R. 1999. Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge: Cambridge University Press.Google Scholar
Ashbaugh, M.S., and Benguria, R.D. 1992. A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions. Ann. Math. (2), 135(3), 601628.Google Scholar
Ashbaugh, M.S., and Benguria, R.D. 1994. Isoperimetric inequalities for eigenvalue ratios. Pages 1–36 of: Partial Differential Equations of Elliptic Type (Cortona, 1992). Symposia Mathematica, XXXV. Cambridge: Cambridge University Press.Google Scholar
Ashbaugh, M.S., and Benguria, R.D. 1995. On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J., 78(1), 117.Google Scholar
Ashbaugh, M.S., Benguria, R.D., and Laugesen, R.S. 1997. Inequalities for the first eigenvalues of the clamped plate and buckling problems. Pages 95–110 of: General Inequalities, 7 (Oberwolfach, 1995). International Series of Numerical Mathematics, vol. 123. Basel: Birkhäuser.Google Scholar
Astala, K., Iwaniec, T., and Martin, G. 2009. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series, vol. 48. Princeton, NJ: Princeton University Press.Google Scholar
Atkinson, K., and Han, W. 2012. Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Heidelberg: Springer.CrossRefGoogle Scholar
Aubin, T. 1976. Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geometry, 11(4), 573598.Google Scholar
Baernstein, II, A. 1997. Comparison of p-harmonic measures of subsets of the unit circle. Algebra i Analiz, 9(3), 141149.Google Scholar
Baernstein, II, A. 1973. Proof of Edrei’s spread conjecture. Proc. London Math. Soc. (3), 26, 418434.Google Scholar
Baernstein, II, A. 1974. Integral means, univalent functions and circular symmetrization. Acta Math., 133, 139169.Google Scholar
Baernstein, II, A. 1977. Regularity theorems associated with the spread relation. J. Anal. Math., 31, 76111.Google Scholar
Baernstein, II, A. 1978. Some sharp inequalities for conjugate functions. Indiana Univ. Math. J., 27(5), 833852.Google Scholar
Baernstein, II, A. 1980. How the ∗-function solves extremal problems. Pages 639–644 of: Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Helsinki: Acad. Sci. Fennica.Google Scholar
Baernstein, II, A. 1987a. Dubinin’s symmetrization theorem. Pages 23–30 of: Complex Analysis, I (College Park, Md., 1985–86). Lecture Notes in Mathematics, vol. 1275. Berlin: Springer.Google Scholar
Baernstein, II, A. 1987b. On the harmonic measure of slit domains. Complex Variables Theory Appl., 9(2–3), 131142.Google Scholar
Baernstein, II, A. 1989a. Convolution and rearrangement on the circle. Complex Variables Theory Appl., 12(1–4), 3337.Google Scholar
Baernstein, II, A. 1989b. Some topics in symmetrization. Pages 111–123 of: Harmonic Analysis and Partial Differential Equations (El Escorial, 1987). Lecture Notes in Mathematics, vol. 1384. Berlin: Springer.Google Scholar
Baernstein, II, A. 1993. An extremal property of meromorphic functions with n-fold symmetry. Complex Variables Theory Appl., 21(3–4), 137148.Google Scholar
Baernstein, II, A. 1994. A unified approach to symmetrization. Pages 47–91 of: Partial Differential Equations of Elliptic Type (Cortona, 1992). Sympos. Math., XXXV. Cambridge: Cambridge University Press.Google Scholar
Baernstein, II, A. 2002. The ∗-function in complex analysis. Pages 229–271 of: Handbook of Complex Analysis: Geometric Function Theory, Vol. 1. Amsterdam: North-Holland.Google Scholar
Baernstein, II, A., and Brown, J.E. 1982. Integral means of derivatives of monotone slit mappings. Comment. Math. Helv., 57(2), 331348.Google Scholar
Baernstein, II, A., and Loss, M. 1997. Some conjectures about L p norms of k-plane transforms. Rend. Sem. Mat. Fis. Milano, 67, 926 (2000).Google Scholar
Baernstein, II, A., and Manfredi, J.J. 1983. Topics in quasiconformal mapping. Pages 819–862 of: Topics in Modern Harmonic Analysis, Vol. I, II (Turin/Milan, 1982). Rome: Istituto Nazionale di Alta Matematica “Francesco Severi”.Google Scholar
Baernstein, II, A., and Schober, G. 1980. Estimates for inverse coefficients of univalent functions from integral means. Israel J. Math., 36(1), 7582.Google Scholar
Baernstein, II, A., and Taylor, B.A. 1976. Spherical rearrangements, subharmonic functions, and ∗-functions in n-space. Duke Math. J., 43(2), 245268.Google Scholar
Baernstein, II, A., Laugesen, R.S., and Pritsker, I.E. 2011. Moment inequalities for equilibrium measures in the plane. Pure Appl. Math. Q., 7(1), 5186.Google Scholar
Bandle, C. 1980. Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics, vol. 7. Boston: Pitman (Advanced Publishing Program).Google Scholar
Bañuelos, R., and Carroll, T. 1994. Brownian motion and the fundamental frequency of a drum. Duke Math. J., 75(3), 575602.Google Scholar
Bañuelos, R., van den Berg, M., and Carroll, T. 2002. Torsional rigidity and expected lifetime of Brownian motion. J. London Math. Soc. (2), 66(2), 499512.Google Scholar
Barthe, F. 1998. Optimal Young’s inequality and its converse: a simple proof. Geom. Funct. Anal., 8(2), 234242.Google Scholar
Barthe, F. 2003. Autour de l’inégalité de Brunn-Minkowski. Ann. Fac. Sci. Toulouse Math. (6), 12(2), 127178.Google Scholar
Beckner, W. 1975. Inequalities in Fourier analysis. Ann. Math. (2), 102(1), 159182.Google Scholar
Beckner, W. 1991. Moser-Trudinger inequality in higher dimensions. Int. Math. Res. Notices, no. 7, 83–91.Google Scholar
Beckner, W. 1992. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere S n . Proc. Natl. Acad. Sci. U.S.A., 89(11), 48164819.Google Scholar
Beckner, W. 1993. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. (2), 138(1), 213242.Google Scholar
Beckner, W. 1995. Geometric inequalities in Fourier anaylsis. Pages 36–68 of: Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991). Princeton Math. Ser., vol. 42. Princeton, NJ: Princeton University Press.Google Scholar
Bennett, C., and Sharpley, R. 1988. Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Boston: Academic Press Inc.Google Scholar
Bennett, J., Carbery, A., Christ, M., and Tao, T. 2008. The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal., 17(5), 13431415.Google Scholar
Bérard, P. 1986. Analysis on Riemannian Manifolds and Geometric Applications: An Introduction. Monografías de Matemática [Mathematical Monographs], vol. 42. Rio de Janeiro: Instituto de Matemática Pura e Aplicada (IMPA).Google Scholar
Betsakos, D. 2004. Symmetrization, symmetric stable processes, and Riesz capacities. Trans. Amer. Math. Soc., 356(2), 735755.Google Scholar
Bhayo, B.A., and Vuorinen, M. 2011. On Mori’s theorem for quasiconformal maps in the n-space. Trans. Amer. Math. Soc., 363(11), 57035719.Google Scholar
Blaschke, W. 1917. Über affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Leipziger Ber., 69, 436453.Google Scholar
Blaschke, W. 1923. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bliss, G.A. 1930. An integral inequality. J. London Math. Soc., 5(11), 4046.Google Scholar
Blumenthal, R.M., and Getoor, R.K. 1968. Markov Processes and Potential Theory. Pure and Applied Mathematics, Vol. 29. New York: Academic Press.Google Scholar
Bobkov, S. 1996. A functional form of the isoperimetric inequality for the Gaussian measure. J. Funct. Anal., 135(1), 3949.Google Scholar
Bobkov, S.G., and Houdré, C. 1997. Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc., 129(616).Google Scholar
Bonnesen, T., and Fenchel, W. 1987. Theory of Convex Bodies. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. Moscow, ID: BCS Associates.Google Scholar
Borell, C. 1975. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2), 207216.Google Scholar
Borell, C. 1985. Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z. Wahrsch. Verw. Gebiete, 70(1), 113.Google Scholar
Brascamp, H.J., Lieb, E.H., and Luttinger, J.M. 1974. A general rearrangement inequality for multiple integrals. J. Funct. Anal., 17, 227237.Google Scholar
Brascamp, H.J., and Lieb, E.H. 1976. On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., 22(4), 366389.Google Scholar
Brenier, Y. 1991. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 44(4), 375417.Google Scholar
Brock, F., and Solynin, A.Y. 2000. An approach to symmetrization via polarization. Trans. Amer. Math. Soc., 352(4), 17591796.Google Scholar
Brothers, J.E., and Ziemer, W.P. 1988. Minimal rearrangements of Sobolev functions. J. Reine Angew. Math., 384, 153179.Google Scholar
Burago, Y.D., and Zalgaller, V.A. 1988. Geometric Inequalities. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285. Translated from the Russian by A. B. Sosinskiĭ, Springer Series in Soviet Mathematics. Berlin: Springer-Verlag.Google Scholar
Burchard, A. 1997. Steiner symmetrization is continuous in W 1,p . Geom. Funct. Anal., 7(5), 823860.Google Scholar
Burchard, A., and Schmuckenschläger, M. 2001. Comparison theorems for exit times. Geom. Funct. Anal., 11(4), 651692.Google Scholar
Burchard, A. 1996. Cases of equality in the Riesz rearrangement inequality. Ann. Math. (2), 143(3), 499527.Google Scholar
Burchard, A., and Ferone, A. 2015. On the extremals of the Pólya-Szegő inequality. Indiana Univ. Math. J., 64(5), 14471463.Google Scholar
Burchard, A., and Hajaiej, H. 2006. Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal., 233(2), 561582.Google Scholar
Caccioppoli, R. 1953. Misura e integrazione degli insiemi dimensionalmente orientati. Rend. Acc. Naz. Lincei, 12, 311.Google Scholar
Carleman, T. 1918. Über ein Minimalproblem der mathematischen Physik. Math. Z., 1(2–3), 208212.Google Scholar
Carlen, E., and Loss, M. 1992. Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n . Geom. Funct. Anal., 2(1), 90104.Google Scholar
Carleson, L., and Chang, S.-Y.A. 1986. On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2), 110(2), 113127.Google Scholar
Cartwright, M.L. 1956. Integral Functions. Cambridge Tracts in Mathematics and Mathematical Physics, No. 44. Cambridge: Cambridge University Press.Google Scholar
Chang, S.-Y.A. 1996. The Moser-Trudinger inequality and applications to some problems in conformal geometry. Pages 65–125 of: Nonlinear Partial Differential Equations in Differential Geometry (Park City, UT, 1992). IAS/Park City Math. Ser., vol. 2. Providence, RI: Amer. Math. Soc.Google Scholar
Chasman, L.M., and Langford, J.J. 2016. The clamped plate in Gauss space. Ann. Mat. Pura Appl. (4), 195(6), 19772005.Google Scholar
Chavel, I. 1993. Riemannian Geometry—A Modern Introduction. Cambridge Tracts in Mathematics, vol. 108. Cambridge: Cambridge University Press.Google Scholar
Chavel, I. 2001. Isoperimetric Inequalities. Cambridge Tracts in Mathematics, vol. 145. Cambridge: Cambridge University Press.Google Scholar
Chiti, G. 1979. Rearrangements of functions and convergence in Orlicz spaces. Applicable Anal., 9(1), 2327.Google Scholar
Chong, K.M. 1975. Variation reducing properties of decreasing rearrangements. Canad. J. Math., 27, 330336.Google Scholar
Christ, M. 1984. Estimates for the k-plane transform. Indiana Univ. Math. J., 33(6), 891910.Google Scholar
Cianchi, A., and Fusco, N. 2006. Minimal rearrangements, strict convexity and critical points. Appl. Anal., 85(1–3), 6785.Google Scholar
Cordero-Erausquin, D., Nazaret, B., and Villani, C. 2004. A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math., 182(2), 307332.Google Scholar
Crandall, M.G., and Tartar, L. 1980. Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc., 78(3), 385390.Google Scholar
Crowe, J.A., Zweibel, J.A., and Rosenbloom, P.C. 1986. Rearrangements of functions. J. Funct. Anal., 66(3), 432438.Google Scholar
Davies, E.B. 1989. Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge: Cambridge University Press.Google Scholar
Davis, B. 1974. On the weak type (1,1) inequality for conjugate functions. Proc. Amer. Math. Soc., 44, 307311.Google Scholar
Davis, B. 1976. On Kolmogorov’s inequalities . Trans. Amer. Math. Soc., 222, 179192.Google Scholar
de Branges, L. 1985. A proof of the Bieberbach conjecture. Acta Math., 154(1–2), 137152.Google Scholar
De Giorgi, E. 1954. Su una teoria generale della misura (r − 1)-dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura Appl. (4), 36, 191213.Google Scholar
De Giorgi, E. 1955. Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazio ad r dimensioni. Ricerche Mat., 4, 95113.Google Scholar
Dieudonné, J. 1951. Sur les espaces de Köthe. J. Anal. Math., 1, 81115.Google Scholar
Doob, J.L. 1953. Stochastic Processes. New York: John Wiley & Sons Inc.Google Scholar
Draghici, C. 2005. A general rearrangement inequality. Proc. Amer. Math. Soc., 133(3), 735743.Google Scholar
Drasin, D. 1976. The inverse problem of the Nevanlinna theory. Acta Math., 138(1–2), 83151.Google Scholar
Drasin, D. 2015. Albert Baernstein II 1941–2014. Notices Amer. Math. Soc., 62(7), 815818.Google Scholar
Drasin, D., and Weitsman, A. 1975. Meromorphic functions with large sums of deficiencies. Adv. Math., 15, 93126.Google Scholar
Dubinin, V.N. 1987. Transformation of condensers in space. Dokl. Akad. Nauk SSSR, 296(1), 1820.Google Scholar
Dubinin, V.N. 1993. Capacities and geometric transformations of subsets in n-space. Geom. Funct. Anal., 3(4), 342369.Google Scholar
Dubinin, V.N. 2014. Condenser Capacities and Symmetrization in Geometric Function Theory. Translated from the Russian by N. G. Kruzhilin. Basel: Springer.Google Scholar
Dunford, N., and Schwartz, J.T. 1958. Linear Operators. I. General Theory. With the assistance of W.G. Bade and R.G. Bartle. Pure and Applied Mathematics, Vol. 7. New York: Interscience Publishers, Inc.Google Scholar
Duren, P.L. 1983. Univalent Functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259. New York: Springer-Verlag.Google Scholar
Durrett, R. 1984. Brownian Motion and Martingales in Analysis. Wadsworth Mathematics Series. Belmont, CA: Wadsworth International Group.Google Scholar
Edrei, A. 1965. Sums of deficiencies of meromorphic functions. J. Anal. Math., 14, 79107.Google Scholar
Edrei, A. 1970. A local form of the Phragmén–Lindelöf indicator. Mathematika, 17, 149172.Google Scholar
Edrei, A. 1973. Solution of the deficiency problem for functions of small lower order. Proc. London Math. Soc. (3), 26, 435445.Google Scholar
Edrei, A., and Fuchs, W.H.J. 1960. The deficiencies of meromorphic functions of order less than one. Duke Math. J., 27, 233249.Google Scholar
Ehrhard, A. 1983a. Symétrisation dans l’espace de Gauss. Math. Scand., 53(2), 281301.Google Scholar
Ehrhard, A. 1983b. Un principe de symétrisation dans les espaces de Gauss. Pages 92– 101 of: Probability in Banach Spaces, IV (Oberwolfach, 1982). Lecture Notes in Math., vol. 990. Berlin: Springer.Google Scholar
Ehrhard, A. 1984. Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Ann. Sci. École Norm. Sup. (4), 17(2), 317332.Google Scholar
Epperson, J.B. 1990. A class of monotone decreasing rearrangements. J. Math. Anal. Appl., 150(1), 224236.Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. 1954. Tables of Integral Transforms. Vol. II. New York–Toronto–London: McGraw-Hill Book Company, Inc. Based, in part, on notes left by Harry Bateman.Google Scholar
Essén, M., Rossi, J., and Shea, D. 1993. A convolution inequality with applications to function theory. II. J. Anal. Math., 61, 339366.Google Scholar
Evans, L.C. 1998. Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Providence, RI: American Mathematical Society.Google Scholar
Evans, L.C., and Gariepy, R.F. 1992. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press.Google Scholar
Faber, G. 1923. Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungsber. Bayer. Akad. Wiss. Mnchen, Math.-Phys. Kl., 169–172.Google Scholar
Federer, H. 1959. Curvature measures. Trans. Amer. Math. Soc., 93, 418491.Google Scholar
Federer, H. 1969. Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. New York: Springer-Verlag New York Inc.Google Scholar
Federer, H., and Fleming, W.H. 1960. Normal and integral currents. Ann. of Math. (2), 72, 458520.Google Scholar
Folland, G.B. 1999. Real Analysis: Modern Techniques and Their Applications. Second edition. Pure and Applied Mathematics (New York). New York: John Wiley & Sons Inc. A Wiley-Interscience Publication.Google Scholar
Folland, G.B. 2002. Advanced Calculus. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Frostman, O. 1935. Potentiel d’équilibre et capacité de ensembles avec quelques applications à la théorie des fonctions. Med. Lund. Univ. Math. Sem., 3, 1118.Google Scholar
Fuchs, W.H.J. 1963. Proof of a conjecture of G. Pólya concerning gap series. Illinois J. Math., 7, 661667.Google Scholar
Fuchs, W.H.J. 1967. Developments in the classical Nevanlinna theory of meromorphic functions. Bull. Amer. Math. Soc., 73, 275291.Google Scholar
Fuchs, W.H.J. 1974. A theorem on min|z| log |f (z)|/T(r, f ). Pages 69–72. London Math. Soc. Lecture Note Ser., No. 12 of: Proceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973). London: Cambridge University Press.Google Scholar
Gardner, R.J. 2002. The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39(3), 355405.Google Scholar
Gehring, F.W. 1961. Symmetrization of rings in space. Trans. Amer. Math. Soc., 101, 499519.Google Scholar
Gehring, F.W. 1962. Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., 103, 353393.Google Scholar
Gilbarg, D., and Trudinger, N.S. 1983. Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der Mathematischen Wissenschaften, vol. 224. Berlin: Springer-Verlag.Google Scholar
Giusti, E. 1984. Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Basel: Birkhäuser Verlag.Google Scholar
Godula, J., and Nowak, M. 1987. Meromorphic univalent functions in an annulus. Rend. Circ. Mat. Palermo (2), 36(3), 474481 (1988).Google Scholar
Goldberg, A.A., and Ostrovskii, I.V. 2008. Value Distribution of Meromorphic Functions. Translations of Mathematical Monographs, vol. 236. Translated from the 1970 Russian original by Mikhail Ostrovskii, With an appendix by Alexandre Eremenko and James K. Langley. Providence, RI: American Mathematical Society.Google Scholar
González, C. 2000. Differential inequalities associated with weighted symmetrization processes on the real line. J. Anal. Math., 82, 2154.Google Scholar
Govorov, N.V. 1969. The Paley conjecture. Funkcional. Anal. i Priložen., 3(2), 4145.Google Scholar
Gross, L. 1975. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4), 10611083.Google Scholar
Hadwiger, H., and Ohmann, D. 1956. Brunn–Minkowskischer Satz und Isoperimetrie. Math. Z., 66, 18.Google Scholar
Haliste, K. 1965. Estimates of harmonic measures. Ark. Mat., 6, 131 (1965).Google Scholar
Hamel, F., Nadirashvili, N., and Russ, E. 2011. Rearrangement inequalities and applications to isoperimetric problems for eigenvalues. Ann. Math. (2), 174(2), 647755.Google Scholar
Hardy, G.H., and Littlewood, J.E. 1930. A maximal theorem with function-theoretic applications. Acta Math., 54(1), 81116.Google Scholar
Hardy, G.H., Littlewood, J.E., and Pólya, G. 1952. Inequalities. Second edition. Cambridge: Cambridge University Press.Google Scholar
Hayman, W.K. 1950. Symmetrization in the Theory of Functions. Tech. Rep. no. 11, Navy Contract N6-ori-106 Task Order 5. Stanford University.Google Scholar
Hayman, W.K. 1964. Meromorphic Functions. Oxford Mathematical Monographs. Oxford: Clarendon Press.Google Scholar
Hayman, W.K. 1967. Research Problems in Function Theory. London: The Athlone Press University of London.Google Scholar
Hayman, W.K. 1989. Subharmonic Functions. Vol. 2. London Mathematical Society Monographs, vol. 20. London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].Google Scholar
Hayman, W.K. 1994. Multivalent Functions. Second edition. Cambridge Tracts in Mathematics and Mathematical Physics, No. 48. Cambridge: Cambridge University Press.Google Scholar
Hayman, W.K., and Kennedy, P.B. 1976. Subharmonic Functions. Vol. I. London Mathematical Society Monographs, No. 9. London: Academic Press [Harcourt Brace Jovanovich Publishers].Google Scholar
Hazewinkel, M. (ed.). 1995. Encyclopaedia of Mathematics. Translated from the Russian, Reprint of the 1988–1994 English translation. Dordrecht: Kluwer Academic Publishers.Google Scholar
Heinonen, J., Kilpeläinen, T., and Martio, O. 1993. Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. New York: Clarendon Press.Google Scholar
Henrot, A. (ed). 2017. Shape Optimization and Spectral Theory. Warsaw: De Gruyter Open.Google Scholar
Herbst, I.W., and Zhao, Z.X. 1988. Sobolev spaces, Kac-regularity, and the Feynman–Kac formula. Pages 171–191 of: Seminar on Stochastic Processes, 1987 (Princeton, NJ, 1987). Progr. Probab. Statist., vol. 15. Boston: Birkhäuser Boston.Google Scholar
Hildén, K. 1976. Symmetrization of functions in Sobolev spaces and the isoperimetric inequality. Manuscripta Math., 18(3), 215235.Google Scholar
Hoel, P.G., Port, S.C., and Stone, C.J. 1972. Introduction to Stochastic Processes. The Houghton Mifflin Series in Statistics. Boston.: Houghton Mifflin Co.Google Scholar
Hoffman, K. 1962. Banach Spaces of Analytic Functions. Prentice-Hall Series in Modern Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar
Hörmander, L. 1994. Notions of Convexity. Progress in Mathematics, vol. 127. Boston: Birkhäuser Boston Inc.Google Scholar
Iwaniec, T., and Manfredi, J.J. 1989. Regularity of p-harmonic functions on the plane. Rev. Mat. Iberoamericana, 5(1-2), 119.Google Scholar
Iwaniec, T., and Martin, G. 2001. Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs. New York: Clarendon Press.Google Scholar
Jenkins, J.A. 1955. On circularly symmetric functions. Proc. Amer. Math. Soc., 6, 620624.Google Scholar
Kac, M. 1949. On distributions of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 113.Google Scholar
Karatzas, I., and Shreve, S.E. 1991. Brownian Motion and Stochastic Calculus. Second edition. Graduate Texts in Mathematics, vol. 113. New York: Springer-Verlag.Google Scholar
Kato, T. 1978. Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. Pages 185–195 of: Topics in Functional Analysis (Essays Dedicated to M. G. Kreĭn on the Occasion of his 70th Birthday). Adv. in Math. Suppl. Stud., vol. 3. New York: Academic Press.Google Scholar
Kawohl, B. 1985. Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150. Berlin: Springer-Verlag.Google Scholar
Kellogg, O.D. 1967. Foundations of Potential Theory. Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31. Berlin: Springer-Verlag.Google Scholar
Kesavan, S. 2006. Symmetrization & Applications. Series in Analysis, vol. 3. Hacken-sack, NJ: World Scientific Publishing Co. Pte. Ltd.Google Scholar
Kirwan, W.E., and Schober, G. 1976. Extremal problems for meromorphic univalent functions. J. Anal. Math., 30, 330348.Google Scholar
Köthe, G. 1960. Topologische lineare Räume. I. Die Grundlehren der mathematischen Wissenschaften, Bd. 107. Berlin: Springer-Verlag.Google Scholar
Krahn, E. 1925. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann., 94(1), 97100.Google Scholar
Krzyż, J. 1959. Circular symmetrization and Green’s function. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 7, 327330 (unbound insert).Google Scholar
Landkof, N.S. 1972. Foundations of Modern Potential Theory. Translated from the Russian by A.P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180. New York: Springer-Verlag.Google Scholar
Langford, J. J. 2015a. Neumann comparison theorems in elliptic PDEs. Potential Anal., 43(3), 415459.Google Scholar
Langford, J.J. 2015b. Symmetrization of Poisson’s equation with Neumann boundary conditions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14(4), 10251063.Google Scholar
Laugesen, R. 1993. Extremal problems involving logarithmic and Green capacity. Duke Math. J., 70(2), 445480.Google Scholar
Laugesen, R.S., and Morpurgo, C. 1998. Extremals for eigenvalues of Laplacians under conformal mapping. J. Funct. Anal., 155(1), 64108.Google Scholar
Lebedev, N.N. 1972. Special Functions and Their Applications. Revised edition, translated from the Russian and edited by Silverman, R.A., Unabridged and corrected republication. New York: Dover Publications Inc.Google Scholar
Ledoux, M. 1994. Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space. Bull. Sci. Math., 118(6), 485510.Google Scholar
Lehto, O. 1953. A majorant principle in the theory of functions. Math. Scand., 1, 517.Google Scholar
Lehto, O., and Virtanen, K.I. 1973. Quasiconformal Mappings in the Plane. Second edition. Translated from the German by K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126. New York: Springer-Verlag.Google Scholar
Leung, Y.J. 1979. Integral means of the derivatives of some univalent functions. Bull. London Math. Soc., 11(3), 289294.Google Scholar
Levin, B.J. 1980. Distribution of Zeros of Entire Functions. Revised edition. Translations of Mathematical Monographs, vol. 5. Translated from the Russian by R.P. Boas, J.M. Danskin, F.M. Goodspeed, J. Korevaar, A.L. Shields and H.P. Thielman. Providence, RI: American Mathematical Society.Google Scholar
Lieb, E.H. 1976–1977. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies Appl. Math., 57(2), 93105.Google Scholar
Lieb, E.H. 1983. Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2), 118(2), 349374.Google Scholar
Lieb, E.H. 1990. Gaussian kernels have only Gaussian maximizers. Invent. Math., 102(1), 179208.Google Scholar
Lieb, E.H., and Loss, Michael. 1997. Analysis. Graduate Studies in Mathematics, vol. 14. Providence, RI: American Mathematical Society.Google Scholar
Littlewood, J.E. 1944. Lectures on the Theory of Functions. London: Oxford University Press.Google Scholar
Littman, W. 1959. A strong maximum principle for weakly L-subharmonic functions. J. Math. Mech., 8, 761770.Google Scholar
Lumiste, Ü., and Peetre, J. (eds.). 1994. Edgar Krahn, 1894–1961. Amsterdam: IOS Press.Google Scholar
Luttinger, J.M. 1973a. Generalized isoperimetric inequalities. J. Math. Phys., 14, 586593.Google Scholar
Luttinger, J.M. 1973b. Generalized isoperimetric inequalities. II, III. J. Math. Phys., 14, 14441447, 1448–1450.Google Scholar
Marshall, A.W., Olkin, I., and Arnold, B.C. 2011. Inequalities: Theory of Majorization and Its Applications. Second edition. Springer Series in Statistics. New York: Springer.Google Scholar
Marshall, D.E. 1989. A new proof of a sharp inequality concerning the Dirichlet integral. Ark. Mat., 27(1), 131137.Google Scholar
Mattila, P. 1995. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge: Cambridge University Press.Google Scholar
Maz’ja, V.G. 1985. Sobolev Spaces. Springer Series in Soviet Mathematics. Translated from the Russian by T. O. Shaposhnikova. Berlin: Springer-Verlag.Google Scholar
McCann, R.J. 1995. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J., 80(2), 309323.Google Scholar
McCann, R.J. 2001. Polar factorizat3ion of maps on Riemannian manifolds. Geom. Funct. Anal., 11(3), 589608.Google Scholar
McKean, H.P. 1973. Geometry of differential space. Ann. Prob., 1, 197206.Google Scholar
McKean, Jr., H.P., and Singer, I.M. 1967. Curvature and the eigenvalues of the Laplacian. J. Differential Geometry, 1(1), 4369.Google Scholar
Méndez-Hernández, P. J. 2006. An isoperimetric inequality for Riesz capacities. Rocky Mountain J. Math., 36(2), 675682.Google Scholar
Mori, A. 1956. On an absolute constant in the theory of quasi-conformal mappings. J. Math. Soc. Japan, 8, 156166.Google Scholar
Morpurgo, C. 2002. Sharp inequalities for functional integrals and traces of conformally invariant operators. Duke Math. J., 114(3), 477553.Google Scholar
Morrey, Jr., C.B. 1938. On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc., 43(1), 126166.Google Scholar
Morrey, Jr., C.B. 1940. Existence and differentiability theorems for the solutions of variational problems for multiple integrals. Bull. Amer. Math. Soc., 46, 439458.Google Scholar
Moser, J. 1970/71. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J., 20, 10771092.Google Scholar
Mostow, G.D. 1968. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., 53–104.Google Scholar
Nadirashvili, N.S. 1993. An isoperimetric inequality for the main frequency of a clamped plate. Dokl. Akad. Nauk, 332(4), 436439.Google Scholar
Nelson, E. 1973. The free Markoff field. J. Funct. Anal., 12, 211227.Google Scholar
Nevanlinna, R. 1970. Analytic Functions. Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162. Springer-Verlag: New York-Berlin.Google Scholar
Onofri, E. 1982. On the positivity of the effective action in a theory of random surfaces. Comm. Math. Phys., 86(3), 321326.Google Scholar
Osgood, B., Phillips, R., and Sarnak, P. 1988. Extremals of determinants of Laplacians. J. Funct. Anal., 80(1), 148211.Google Scholar
Osserman, R. 1978. The isoperimetric inequality. Bull. Amer. Math. Soc., 84(6), 11821238.Google Scholar
Paouris, G., and Pivovarov, P. 2012. A probabilistic take on isoperimetric-type inequalities. Adv. Math., 230(3), 14021422.Google Scholar
Paouris, G., and Pivovarov, P. 2017. Random ball-polyhedra and inequalities for intrinsic volumes. Monatsh. Math., 182(3), 709729.Google Scholar
Payne, L.E. 1967. Isoperimetric inequalities and their applications. SIAM Rev., 9, 453488.Google Scholar
Payne, L.E., Pólya, G., and Weinberger, H.F. 1955. Sur le quotient de deux fréquences propres consécutives. C. R. Acad. Sci. Paris, 241, 917919.Google Scholar
Peretz, R. 2017. Applications of Steiner symmetrization to some extremal problems in geometric function theory. WSEAS Trans. Math., 16, 350367.Google Scholar
Petrenko, V.P. 1969. Growth of meromorphic functions of finite lower order. Izv. Akad. Nauk SSSR Ser. Mat., 33, 414454.Google Scholar
Pfiefer, R.E. 1990. Maximum and minimum sets for some geometric mean values. J. Theoret. Probab., 3(2), 169179.Google Scholar
Pfluger, A. 1946. Zur Defektrelation ganzer Funktionen endlicher Ordnung. Comment. Math. Helv., 19, 91104.Google Scholar
Pichorides, S.K. 1972. On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math., 44, 165179. (errata insert). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, II.Google Scholar
Pitt, L.D. 1977. A Gaussian correlation inequality for symmetric convex sets. Ann. Prob., 5(3), 470474.Google Scholar
Poincaré, H. 1887. Sur un théorème de M. Liapounoff, relatif à l’équilibre d’une masse fluide. Comptes Rendus hebdomadaires des séances de l’Académie des Sciences, 104, 622625.Google Scholar
Pólya, G., and Szegő, G. 1945. Inequalities for the capacity of a condenser. Amer. J. Math., 67, 132.Google Scholar
Pólya, G., and Szegő, G. 1951. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, no. 27. Princeton, NJ: Princeton University Press.Google Scholar
Pólya, G. 1948. Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Quart. Appl. Math., 6, 267277.Google Scholar
Pólya, G. 1950. Sur la symétrisation circulaire. C.R. Acad. Sci. Paris, 230, 2527.Google Scholar
Pólya, G. 1984. Collected Papers. Vol. III. Mathematicians of Our Time, vol. 21. Analysis, Edited by Hersch, J., Rota, G.-C., Reynolds, M.C. and Shortt, R.M.. Cambridge, MA: MIT Press.Google Scholar
Pruss, A.R. 1996. Three counterexamples for a question concerning Green’s functions and circular symmetrization. Proc. Amer. Math. Soc., 124(6), 17551761.Google Scholar
Ransford, T. 1995. Potential Theory in the Complex Plane. London Mathematical Society Student Texts, vol. 28. Cambridge: Cambridge University Press.Google Scholar
Rayleigh, Baron, J.W. 1945. The Theory of Sound. Second edition. New York: Dover Publications.Google Scholar
Reed, M., and Simon, B. 1972. Methods of Modern Mathematical Physics. I. Functional Analysis. New York: Academic Press.Google Scholar
Reed, M., and Simon, B. 1975. Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers].Google Scholar
Reshetnyak, Y.G. 1989. Space Mappings with Bounded Distortion. Translations of Mathematical Monographs, vol. 73. Translated from the Russian by H.H. McFaden. Providence, RI: American Mathematical Society.Google Scholar
Rickman, S. 1993. Quasiregular Mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 26. Berlin: Springer-Verlag.Google Scholar
Riesz, F. 1930. Sur une inégalité intégrale. J. London Math. Soc., 5(3), 162168.Google Scholar
Riesz, M. 1928. Sur les fonctions conjuguées. Math. Z., 27(1), 218244.Google Scholar
Roberts, A.W., and Varberg, D.E. 1973. Convex Functions. Pure and Applied Mathematics, Vol. 57. New York–London: Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers].Google Scholar
Rogers, C.A. 1957. A single integral inequality. J. London Math. Soc., 32, 102108.Google Scholar
Rossi, J., and Weitsman, A. 1983. A unified approach to certain questions in value distribution theory. J. London Math. Soc. (2), 28(2), 310326.Google Scholar
Royen, T. 2014. A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions. Far East J. Theor. Stat., 48(2), 139145.Google Scholar
Rudin, W. 1964. Principles of Mathematical Analysis. Second edition. New York: McGraw-Hill Book Co.Google Scholar
Rudin, W. 1966. Real and Complex Analysis. New York: McGraw-Hill Book Co.Google Scholar
Ryff, J.V. 1970. Measure preserving transformations and rearrangements. J. Math. Anal. Appl., 31, 449458.Google Scholar
Sarvas, J. 1972. Symmetrization of condensers in n-space. Ann. Acad. Sci. Fenn. Ser. A I, 44.Google Scholar
Schaefer, H.H. 1971. Topological Vector Spaces. Third printing corrected, Graduate Texts in Mathematics, Vol. 3. New York: Springer-Verlag.Google Scholar
Schechtman, G., Schlumprecht, T., and Zinn, J. 1998. On the Gaussian measure of the intersection. Ann. Prob., 26(1), 346357.Google Scholar
Schmidt, E. 1943. Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionenzahl. Math. Z., 49, 1109.Google Scholar
Schneider, R. 1993. Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge: Cambridge University Press.Google Scholar
Schulz, F., and Vera de Serio, V. 1993. Symmetrization with respect to a measure. Trans. Amer. Math. Soc., 337(1), 195210.Google Scholar
Schwarz, H.A. 1884. Beweis des Satzes, dass die Kugel kleinere Oberfläche besitzt, als jeder andere Körper gleichen Volumens. Nachrichten Königlichen Gesellschaft Wissenschaften Göttingen, 1–13.Google Scholar
Schwarz, H.A. 1890. Gesammelte Mathematische Abhandlungen. Berlin: Springer Verlag.Google Scholar
Shea, D. F. 1966. On the Valiron deficiencies of meromorphic functions of finite order. Trans. Amer. Math. Soc., 124, 201227.Google Scholar
Sierpiński, W. 1920. Sur la question de la mesurabilité de la base de M. Hamel. Fundamenta Mathematicae, 1(1), 105111.Google Scholar
Simon, B. 1979. Functional Integration and Quantum Physics. Pure and Applied Mathematics, vol. 86. New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].Google Scholar
Simon, B., and Høegh-Krohn, R. 1972. Hypercontractive semigroups and two dimensional self-coupled Bose fields. J. Funct. Anal., 9, 121180.Google Scholar
Smith, K.T. 1983. Primer of Modern Analysis. Second edition. Undergraduate Texts in Mathematics. New York: Springer-Verlag.Google Scholar
Sobolev, S.L. 1938. On a theorem in functional analysis. Sb. Math., 4, 471497.Google Scholar
Solynin, A.Y. 1996. Extremal configurations in some problems on capacity and harmonic measure. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 226 (Anal. Teor. Chisel i Teor. Funktsiĭ. 13), 170195, 239.Google Scholar
Sperner, Jr., E. 1973. Zur Symmetrisierung von Funktionen auf Sphären. Math. Z., 134, 317327.Google Scholar
Sperner, Jr., E. 1979. Symmetrization and currents. Mathematika, 26(2), 269289 (1980).Google Scholar
Spivak, M. 1965. Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus. New York-Amsterdam: W. A. Benjamin, Inc.Google Scholar
Stammbach, U. 2012. A letter of Hermann Amandus Schwarz on isoperimetric problems. Math. Intelligencer, 34(1), 4451. With an appendix containing German transcription of the letter.Google Scholar
Stanoyevitch, A. 1994. Integral inequalities and equalities for the rearrangement of Hardy and Littlewood. J. Math. Anal. Appl., 183(3), 509517.Google Scholar
Stein, E.M. 1970. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton, NJ: Princeton University Press.Google Scholar
Stein, E.M., and Weiss, G. 1971. Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32. Princeton, NJ: Princeton University Press.Google Scholar
Steiner, J. 1842. Sur le maximum et le minimum des figures dans le plan, sur la sphère et dans l’espace en géneral. J. Reine Angew. Math., 24, 93152.Google Scholar
Steiner, J. 1882. Gesammelte Werke Vol.2. New York: Prussian Academy of Sciences.Google Scholar
Stroock, D.W. 1993. Probability Theory, An Analytic View. Cambridge: Cambridge University Press.Google Scholar
Szegő, G. 1930. Über einige Extremalaufgaben der Potentialtheorie. Math. Z., 31(1), 583593.Google Scholar
Szegö, G. 1950. On membranes and plates. Proc. Natl. Acad. Sci. U.S.A., 36, 210216.Google Scholar
Szegö, G. 1958. Note to my paper “On membranes and plates”. Proc. Natl. Acad. Sci. U.S.A., 44, 314316.Google Scholar
Talenti, G. 1976a. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4), 110, 353372.Google Scholar
Talenti, G. 1976b. Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3(4), 697718.Google Scholar
Talenti, G. 1979. Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl. (4), 120, 160184.Google Scholar
Talenti, G. 1993. The standard isoperimetric theorem. Pages 73–123 of: Handbook of Convex Geometry, Vol. A, B. Amsterdam: North-Holland.Google Scholar
Talenti, G. 1997. A weighted version of a rearrangement inequality. Ann. Univ. Ferrara Sez. VII (N.S.), 43, 121133 (1998).Google Scholar
Talenti, G. 2016. The art of rearranging. Milan J. Math., 84(1), 105157.Google Scholar
Teichmüller, O. 1939. Vermutungen und Sätze über die Wertverteilung gebrochener Funktionen endlicher Ordnung. Deutsche Math., 4, 163190.Google Scholar
Tikhomirov, V.M. 1990. Stories about Maxima and Minima. Mathematical World, vol. 1. Translated from the 1986 Russian original by Abe Shenitzer. Providence, RI: American Mathematical Society.Google Scholar
Tsuji, M. 1975. Potential Theory in Modern Function Theory. Reprinting of the 1959 original. New York: Chelsea Publishing Co.Google Scholar
Väisälä, J. 1961. On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A I No., 298, 36.Google Scholar
Van Schaftingen, J. 2006. Approximation of symmetrizations and symmetry of critical points. Topol. Methods Nonlinear Anal., 28(1), 6185.Google Scholar
Vilenkin, N.J. 1968. Special Functions and the Theory of Group Representations. Translated from the Russian by V.N. Singh. Translations of Mathematical Monographs, Vol. 22. Providence, RI: American Mathematical Society.Google Scholar
Vilenkin, N.J., and Klimyk, A.U. 1991. Representation of Lie Groups and Special Functions. Vol. 1. Mathematics and its Applications (Soviet Series), vol. 72. Simplest Lie groups, special functions and integral transforms, Translated from the Russian by V.A. Groza and A.A. Groza. Dordrecht: Kluwer Academic Publishers Group.Google Scholar
Villani, C. 2003. Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Providence, RI: American Mathematical Society.Google Scholar
Watanabe, T. 1983. The isoperimetric inequality for isotropic unimodal Lévy processes. Z. Wahrsch. Verw. Gebiete, 63(4), 487499.Google Scholar
Weitsman, A. 1979. A symmetry property of the Poincaré metric. Bull. London Math. Soc., 11(3), 295299.Google Scholar
Weitsman, A. 1986. Symmetrization and the Poincaré metric. Ann. Math. (2), 124(1), 159169.Google Scholar
Wojtaszczyk, P. 1991. Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, vol. 25. Cambridge: Cambridge University Press.Google Scholar
Wolontis, V. 1952. Properties of conformal invariants. Amer. J. Math., 74, 587606.Google Scholar
Wu, J.-M. 2002. Harmonic measures for symmetric stable processes. Studia Math., 149(3), 281293.Google Scholar
Yanagihara, H. 1993. An integral inequality for derivatives of equimeasurable rearrangements. J. Math. Anal. Appl., 175(2), 448457.Google Scholar
Yang, S.S. 1994. Estimates for coefficients of univalent functions from integral means and Grunsky inequalities. Israel J. Math., 87(1–3), 129142.Google Scholar
Ziemer, W.P. 1989. Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. New York: Springer-Verlag.Google Scholar
Zygmund, A. 1968. Trigonometric Series: Vols. I, II. Second edition, reprinted with corrections and some additions. London: Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×