Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-13T14:07:29.595Z Has data issue: false hasContentIssue false

9 - ENERGY-EFFICIENT ESTIMATION OF CLOCK OFFSET FOR INACTIVE NODES

Published online by Cambridge University Press:  05 August 2012

Erchin Serpedin
Affiliation:
Texas A & M University
Qasim M. Chaudhari
Affiliation:
Iqra University, Pakistan
Get access

Summary

The two opposite requirements of tightly synchronizing the network with a minimum number of RF transmissions and with high accuracy can be efficiently addressed using the approach suggested by the FTSP, where multiple inactive nodes can hear the synchronization messages transmitted by the master node in one-way timing cells exchange mechanisms. To increase the utility of this one-way mechanism, Maroti et al. proposed the synchronization of nodes present in the communication range of the master node (broadcasting the timing beacons), where each node receiving the timing cells transmitted by the master node estimates its own clock parameters and synchronizes with the master node accordingly. However, the similar situation pertaining to the two-way timing exchange mechanism, i.e., the framework in which the nodes located in the common broadcast region of a master and slave node can overhear the time synchronization packets between them and exploit the acquired information to achieve clock synchronization remained largely unnoticed until the PBS protocol introduced it (as discussed in detail in Chapter 8). Note that although the idea of SRS is quite old and has most famously been used in NTP for a long time, it is due to the wireless nature of communication channels in sensornets that the technique of synchronization of silent nodes located in their common broadcast region can be exploited. Therefore, the clock synchronization requirements can be reasonably met without paying any price on the network lifetime (i.e., without exchanging additional messages for clock synchronization purposes and thereby reducing battery life) or node hardware (e.g., by improving the quality of the quartz crystals or by utilizing more expensive power-efficient batteries).

Type
Chapter
Information
Synchronization in Wireless Sensor Networks
Parameter Estimation, Performance Benchmarks, and Protocols
, pp. 118 - 139
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×