Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-dbm8p Total loading time: 0 Render date: 2025-09-11T15:00:39.919Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 September 2025

Roberto Gorrieri
Affiliation:
Università degli Studi, Bologna, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Aceto, L., Ingólfsdóttir, A., Larsen, K., and Srba, J., Reactive Systems: Modelling, Specification and Verification, Cambridge University Press, 2007. http://doi:10.1017/CBO9780511814105CrossRefGoogle Scholar
Agerwala, T., and Flynn, M., Comments on capabilities, limitations and “correctness” of Petri nets, SIGARCH Comp. Arch. News 2(4):8186, 1973.http://doi:10.1145/633642.803973CrossRefGoogle Scholar
Autant, C., Belmesk, Z., and Schnoebelen, Ph., Strong bisimilarity on nets revisited, in Procs. PARLE’91, LNCS 506, 295312, Springer, 1991. http://doi:10.1007/3-540-54152-7_71Google Scholar
Autant, C., and Schnoebelen, Ph., Place bisimulations in Petri nets, in Procs. Application and Theory of Petri Nets 1992, LNCS 616, 4561, Springer, 1992. http://doi:10.1007/3-540-55676-1_3CrossRefGoogle Scholar
Baeten, J.C.M., Basten, T., and Reniers, M.A., Process Algebra: Equational Theories of Communicating Processes, Cambridge Tracts in Theoretical Computer Science 50, Cambridge University Press, 2010. http://doi:10.1017/CBO9781139195003Google Scholar
Baldan, P., and Crafa, S., A logic for true concurrency, Journal of the ACM 61(4): 24:124:36, 2014. http://doi:10.1145/2629638CrossRefGoogle Scholar
Baroni, A., Implementation of Algorithms for Bisimulation Equivalence, master ’s thesis, University of Bologna, 2022. amslaurea.unibo.it/25202Google Scholar
Bergstra, J.A., Ponse, A., and Smolka, S.A. (Eds.), Handbook of Process Algebra, Elsevier, 2001. http://doi:10.1016/B978-0-444-82830-9.X5017-6CrossRefGoogle Scholar
Best, E., and Devillers, R., Sequential and concurrent behaviour in Petri net theory. Theoretical Computer Science, 55(1):87136, 1987. http://doi:10.1016/0304-3975(87)90090-9CrossRefGoogle Scholar
Best, E., Devillers, R., Kiehn, A., and Pomello, L., Concurrent bisimulations in Petri nets, Acta Informatica 28(3):231264, 1991. http://doi:10.1007/BF01178506CrossRefGoogle Scholar
Böhm, S., Göller, S., and Jančar, P., Bisimilarity of one-counter processes is PSPACE-complete, in Procs. CONCUR’10, LNCS 6269, 177191, Springer, 2010. http://doi:10.1007/978-3-642-15375-4_13Google Scholar
Bradfield, J.C., and Fröschle, S.B., Independence-friendly modal logic and true concurrency, Nord. J. Comput. 9(2):102117, 2002.Google Scholar
Brauwer, W., Gold, R., and Vogler, W., A survey of behavior and equivalencepreserving refinements of Petri nets, Advances in Petri Nets 1990, LNCS 483, 146, Springer, 1991. http://doi:10.1007/3-540-53863-1_19CrossRefGoogle Scholar
Bravetti, M., and Gorrieri, R., Deciding and axiomatizing weak ST bisimulation for a process algebra with recursion and action refinement, ACM Trans. Comput. Log. 3(4): 465520, 2002. http://doi:10.1145/566385.566386CrossRefGoogle Scholar
Burkart, O., Caucal, D., Moller, F., and Steffen, B., Verification on infinite structures, in Bergstra, J.A., Ponse, A., and Smolka, S.A. (Eds.), Handbook of Process Algebra, 545623, Elsevier, 2001. http://doi:10.1016/B978-044482830-9/50027-8CrossRefGoogle Scholar
Busi, N., and Pinna, G.M., Process semantics for place/transition nets with inhibitor and read arcs, Fundamenta Informaticae 40(23):165197, 1999. http://doi:10.3233/FI-1999-402304CrossRefGoogle Scholar
Busi, N., and Pinna, G.M., Comparing truly concurrent semantics for contextual place/transition nets, Fundamenta Informaticae 44(3):209244, 2000.10.3233/FUN-2000-44301CrossRefGoogle Scholar
Busi, N., Analysis issues in Petri nets with inhibitor arcs, Theoretical Computer Science 275(12):127177, 2002. http://doi:10.1016/S0304-3975(01)00127-XCrossRefGoogle Scholar
Cesco, A., and Gorrieri, R., Decidability of two truly concurrent equivalences for finite bounded Petri nets, Logical Methods in Computer Science 19(4), 2023. http://doi:10.46298/lmcs-19(4:37)2023Google Scholar
Cesco, A., and Gorrieri, R., A decidable equivalence for a Turing-complete, distributed model of computation, in Procs. 46th International Symposium on Mathematical Foundations of Computer Science (MFCS’21), 28:128:18, LIPIcs 202, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. http://doi:10.5555/2376335.2376336Google Scholar
Christensen, S., Decidability and Decomposition in Process Algebra, Ph .D. Thesis, University of Edinburgh, 1993. http://era.ed.ac.uk/handle/1842/410Google Scholar
Christensen, S., Hirshfeld, Y., and Moller, F., Bisimulation equivalence is decidable for basic parallel processes, in Procs. CONCUR’93, LNCS 715, 143157, Springer, 1993. http://doi:10.1007/3-540-57208-2_11Google Scholar
Davies, M., Computability and Unsolvability, McGraw -Hill, 1958.Google Scholar
Degano, P., De Nicola, R., and Montanari, U., A distributed operational semantics for CCS based on C/E systems, Acta Informatica 26(1–2):5991, 1988. http://doi:10.1007/BF02915446CrossRefGoogle Scholar
Degano, P., De Nicola, R., and Montanari, U., Partial orderings descriptions and observations of nondeterministic concurrent processes. In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, LNCS 354, 438466. Springer, 1989.http://doi:10.1007/BFb0013030CrossRefGoogle Scholar
Desel, J., and Esparza, J., Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer Science 40, Cambridge University Press, 1995.http://doi: 10.1017/CBO9780511526558CrossRefGoogle Scholar
Desel, J., and Reisig, W., Place/Transition Petri nets, in Reisig, W., and Rozenberg, G., (Eds.), Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science 1491, 122173, Springer, 1998.http://doi:10.1007/3-540-65306-6_15Google Scholar
Desel, J., Reisig, W., and Rozenberg, G., (Eds.), Lectures on Concurrency and Petri Nets, Advances in Petri Nets, LNCS 3098, Springer, 2004.http://doi:10.1007/b98282Google Scholar
Dijkstra, E.W., Hierarchical ordering of sequential processes, Acta Informatica 1(2):115138, 1971.http://doi:10.1007/BF00289519CrossRefGoogle Scholar
Esparza, J., and Nielsen, M., Decidability issues for Petri nets: A survey, Bulletin of the EATCS 52:244262, 1994. Also available as BRICS Report RS-94-8.Google Scholar
Esparza, J., and Kiehn, A., On the model checking problem for branching-time logics and basic parallel processes, in Procs. CAV’95, LNCS 939, 353366, Springer, 1995.http://doi:10.1007/3-540-60045-0_62Google Scholar
Esparza, J., Decidability and complexity of Petri net problems: An introduction, in Reisig, W., and Rozenberg, G., (Eds.), Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science 1491, 374428, Springer, 1998.. https://doi:10.1007/3-540-65306-620CrossRefGoogle Scholar
Fröschle, S., Jančar, P., Lasota, S., and Sawa, Z., Non-interleaving bisimulation equivalences on basic parallel processes, Information and Computation 208(1):4262, 2010.http://doi:10.1016/j.ic.2009.06.001CrossRefGoogle Scholar
van Glabbeek, R.J., and Vaandrager, F., Petri net models for algebraic theories of concurrency, in Procs. PARLE’87, LNCS 259, 224242, Springer, 1987.http://doi:10.1007/3-540-17945-3_13Google Scholar
van Glabbeek, R.J., and Goltz, U., Equivalence notions for concurrent systems and refinement of actions, in Procs. MFCS’89, LNCS 379, 237248, Springer, 1989. https://doi:10.1007/3-540-51486-4_71Google Scholar
van Glabbeek, R.J., and Goltz, U., Refinement of actions and equivalence notions for concurrent systems, Acta Informatica 37(45):229327, 2001.http://doi:10.1007/s002360000041CrossRefGoogle Scholar
van Glabbeek, R.J., and Weijland, W.P., Branching time and abstraction in bisimulation semantics, Journal of the ACM 43(3):555600, 1996.http://doi:10.1145/233551.233556CrossRefGoogle Scholar
van Glabbeek, R.J., The linear time-branching time spectrum I, in Bergstra, J.A., Ponse, A., and Smolka, S.A. (Eds.), Handbook of Process Algebra, 399, Elsevier, 2001.http://doi:10.1016/B978-044482830-9/50019-9CrossRefGoogle Scholar
van Glabbeek, R.J., Structure preserving bisimilarity – Supporting an operational Petri net semantics of CCSP, In Meyer, R., Platzer, A., Wehrheim, H., Eds. Correct System Design – Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, LNCS 9360, 99130, Springer, 2015. https:doi:10.1007/978-3-319-23506-6_9CrossRefGoogle Scholar
Goltz, U., and Reisig, W., The non-sequential behaviour of Petri nets, Information and Control 57(2):125147, 1983.http://doi:10.1016/S0019-9958(83)80040-0CrossRefGoogle Scholar
Goltz, U., On representing CCS programs by finite Petri nets, in Procs. MFCS’88, LNCS 324, 339350, Springer, 1988.http://doi:10.1007/BFb00171Google Scholar
Gorrieri, R., Marchetti, S., and Montanari, U., A2CCS: Atomic actions for CCS, Theoretical Computer Science 72(2–3):203223, 1990.http://doi:10.1016/0304-3975(90)90035-GCrossRefGoogle Scholar
Gorrieri, R., and Laneve, C., Split, and ST bisimulation semantics, Information and Computation 118(2): 272288, 1995.http://doi:10.1006/inco.1995.1066CrossRefGoogle Scholar
Gorrieri, R., and Rensink, A., Action refinement, in Bergstra, J.A., Ponse, A., and Smolka, S.A. (Eds.), Handbook of Process Algebra, 10471147, Elsevier, 2001.http://doi:10.1016/B978-044482830-9/50034-5CrossRefGoogle Scholar
Gorrieri, R., and Versari, C., Introduction to Concurrency Theory: Transition Systems and CCS, EATCS Texts in Theoretical Computer Science, Springer, 2015.http://doi:10.1007/978-3-319-21491-7CrossRefGoogle Scholar
Gorrieri, R., Process Algebras for Petri Nets: The Alphabetization of Distributed Systems, EATCS Monographs in Theoretical Computer Science, Springer, 2017.http://doi:10.1007/978-3-319-55559-1CrossRefGoogle Scholar
Gorrieri, R., Toward distributed computability theory, In Reisig, W., Rozenberg, G., (Eds) Carl Adam Petri: Ideas, Personality, Impact, 141146, Springer, 2019.http://doi:10.1007/978-3-319-96154-5_18CrossRefGoogle Scholar
Gorrieri, R., Axiomatizing team equivalence for finite-state machines, The Art of Modeling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy, Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birthday, LNCS 111760, 1432, Springer, 2019.http://doi:10.1007/978-3-030-31175-9_2Google Scholar
Gorrieri, R., Team equivalences for finite-state machines with silent moves, Information and Computation Vol. 275, 2020.http://doi:10.1016/j.ic.2020.104603CrossRefGoogle Scholar
Gorrieri, R., Team bisimilarity, and its associated modal logic, for BPP nets, Acta Informatica 58(5):529569, 2021.http://doi:10.1007/s00236-020-00377-4CrossRefGoogle Scholar
Gorrieri, R., Branching place bisimilarity: A decidable behavioral equivalence for finite Petri nets with silent moves, in Procs. 41st Formal Techniques for Distributed Objects, Components, and Systems (FORTE’21), LNCS 12719, 8099, Springer, 2021.http://doi:10.1007/978-3-030-78089-0_5CrossRefGoogle Scholar
Gorrieri, R., Place bisimilarity is decidable, indeed! CoRR, abs/2104.01392, 2021. arXiv:2104.01392Google Scholar
Gorrieri, R., Causal semantics for BPP nets with silent moves, Fundamenta Informaticae 180(3):179249, 2021.http://doi:10.3233/FI-2021-2039CrossRefGoogle Scholar
Gorrieri, R., A study on team bisimulation and h-team bisimulation for BPP nets, Theoretical Computer Science 897:83113, 2022.http://doi:10.1016/j.tcs.2021.09.037CrossRefGoogle Scholar
Gorrieri, R., An algebraic theory of nondeterministic finite automata. J. Log. Algebraic Methods Program. 145: 101055, 2025.http://doi:10.1016/J.JLAMP.2025.101055CrossRefGoogle Scholar
Gorrieri, R., Branching place bisimilarity, CoRR abs/22305.04222, 2023. https://arxiv.org/abs/2305.04222Google Scholar
Gorrieri, R., Compositional semantics of finite Petri nets, CoRR abs/2308.08983, 2023. https://arxiv.org/abs/2308.08983Google Scholar
Gorrieri, R., Axiomatizing NFAs generated by regular grammars, CoRR abs/2402.00502, 2023. https://arxiv.org/abs/2402.00502Google Scholar
Hack, M., Petri net languages, Technical Report 159, MIT, 1976. http:// publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-159.pdfGoogle Scholar
Hack, M., Decidability questions for Petri nets, Ph.D. thesis, MIT, 1976. https://hdl.handle.net/1721.1/149455Google Scholar
Hennessy, M., and Milner, R., On observing nondeterminism and concurrency, In Procs. ICALP’80, LNCS 85, 299309, Springer, 1980.http://doi:10.1007/3-540-10003-2_79Google Scholar
Hennessy, M., and Milner, R., Algebraic laws for nondeterminism and concurrency, Journal of the ACM 32(1):137161, 1985.http://doi:10.1145/2455.2460CrossRefGoogle Scholar
Hirshfeld, Y., Petri nets and the equivalence problem, in Procs. 7th Workshop on Computer Science Logic (CSL’93), LNCS 832,165174, Springer, 1993.http://doi:10.1007/BFb0049CrossRefGoogle Scholar
Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall International Series in Computer Science, 1985.Google Scholar
Hopcroft, J.E., and Karp, R.M., An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM Journal on Computing, 2 (4): 225231,1973.http://doi:10.1137/0202019CrossRefGoogle Scholar
Hopcroft, J.E., Motwani, R., and Ullman, J.D., Introduction to Automata Theory, Languages and Computation, 2nd ed., Addison-Wesley, 2001.Google Scholar
Hunt, H.B., Rosenkrantz, D.J., and Szymanski, T.G., On the equivalence, containment, and covering problems for the regular and context-free languages, Journal of Computer and System Sciences 12:222268, 1976.http://doi:10.1016/S0022-0000(76)80038-4CrossRefGoogle Scholar
Jančar, P., Undecidability of bisimilarity for Petri nets and some related problems, Theoretical Computer Science 148(2):281301, 1995.http://doi:10.1016/0304-3975(95)00037-WCrossRefGoogle Scholar
Jančar, P., Strong bisimilarity on basic parallel processes is PSPACE-complete, in Procs. 18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), 218227, IEEE Computer Society Press, 2003.http://doi:10.1109/LICS.2003.1210061Google Scholar
Janicki, R., and Koutny, M., Semantics of inhibitor nets, Information and Computation 123(1):116, 1995.http://doi:10.1006/inco.1995.1153CrossRefGoogle Scholar
Jategaonkar, L., and Meyer, A., Deciding true concurrency equivalences on safe, finite nets, Theoretical Computer Science 154(1): 107143, 1996.http://doi:10.1016/0304-3975(95)00132-8CrossRefGoogle Scholar
Kanellakis, P., and Smolka, S., CCS expressions, finite state processes, and three problems of equivalence, in Procs. 2nd Annual ACM Symposium on Principles of Distributed Computing, 228240, ACM Press, 1983.http://doi:10.1145/800221.806724Google Scholar
Kanellakis, P., and Smolka, S., CCS expressions, finite state processes and three problems of equivalence, Information and Computation 86:4368, 1990.http://doi:10.1016/0890-5401(90)90025-DGoogle Scholar
Karp, R.M., and Miller, R.E., Parallel program schemata, J. of Comp. and System Sciences 3(2):147195, 1969.http://doi:10.1016/S0022-0000(69)80011-5CrossRefGoogle Scholar
Karzanov, A.V., An exact estimate of an algorithm for finding a maximum flow, applied to the problem on representatives, Problems in Cybernetics 5: 6670, 1973. https://alexander-karzanov.net/ScannedOld/73_tochn-ots_transl.pdfGoogle Scholar
Keller, R., Formal verification of parallel programs, Comm. of the ACM 19(7):371384, 1976.http://doi:10.1145/360248.360251CrossRefGoogle Scholar
Kleene, S.C., Representation of events in nerve nets and finite automata, Automata Studies, Annals of Mathematical Studies, Princeton University Press. 34 (sect.7.2), 1956.Google Scholar
Lehmann, D.J., and Rabin, M.O., On the advantages of free choice: A symmetric and fully distributed solution to the dining philosophers problem, In Procs. ACM POPL’81, 133138, ACM Press, 1981.http://doi:10.1145/567532.567547Google Scholar
Liberato, A., A Study on Bisimulation Equivalence and Team Equivalence, master ’s thesis, University of Bologna, October 2019. https://amslaurea.unibo.it/19128Google Scholar
Mayr, E.W., An algorithm for the general Petri net reachability problem, SIAM J. Comput. 13(3):441460, 1984.http://doi:10.1137/0213029CrossRefGoogle Scholar
Mazurkiewicz, A.W., Ochmanski, E., and Penczek, W., Concurrent systems and inevitability. Theoretical Computer Science, 64(3):281304, 1989.http://doi:10.1016/0304-3975(89)90052-2CrossRefGoogle Scholar
Milne, G.J., CIRCAL and the representation of communication, concurrency, and time, ACM Trans. on Programming Languages and Systems 7(2): 270298, 1985.http://doi:10.1145/3318.3322CrossRefGoogle Scholar
Milner, R., A complete inference systems for a class of regular behaviors, J. Comput. System Scie. 28: 439466, 1984.http://doi:10.1016/0022-0000(84)90023-0CrossRefGoogle Scholar
Milner, R., Communication and Concurrency, Prentice Hall, 1989.Google Scholar
Montanari, U., and Pistore, M., Minimal transition systems for historypreserving bisimulation. In Procs. STACS’97, LNCS 1200, 413425, Springer, 1997. https//doi:10.1007/BFb0023477Google Scholar
Nielsen, M., Plotkin, G.D., and Winskel, G., Petri, nets, event structures and domains, Part I, Theoretical Computer Science 13(1): 85108, 1981.http://doi:10.1016/0304-3975(81)90112-2CrossRefGoogle Scholar
Nielsen, M., and Thiagarajan, P.S., Degrees of non-determinism and concurrency: A Petri net view, in Procs. Fourth Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’84), LNCS 181, 89–117, Springer, 1984.http://doi:10.1007/3-540-13883-8 66Google Scholar
Olderog, E.R., Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer Science 23, Cambridge University Press, 1991.http://doi:10.1017/CBO9780511526589CrossRefGoogle Scholar
Paige, R., and Tarjan, R.E., Three partition refinement algorithms, SIAM Journal of Computing 16(6):973989, 1987.http://doi:10.1137/0216062CrossRefGoogle Scholar
Park, D.M.R., Concurrency and automata on infinite sequences, In Procs. 5th GI-Conference on Theoretical Computer Science, LNCS 104, 167183, Springer, 1981.http://doi:10.1007/BFb0017309CrossRefGoogle Scholar
Parrow, J., An introduction to the π-calculus, Chapter 8 of [8], 479–543, Elsevier, 2001. http://doi:10.1016/B978-044482830-9/50026-6CrossRefGoogle Scholar
Peterson, J.L., Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981.http://doi:10.5555/539513Google Scholar
Petri, C.A., Kommunikation mit Automaten, Ph.D. dissertation, University of Bonn, 1962.Google Scholar
Petri, C.A., Non-sequential processes, GMD-ISF Report 77.05, GMD, Bonn, 1977.Google Scholar
Plotkin, G.D., A structural approach to operational semantics, Journal of Logic and Algebraic Programming 6061: 17139, 2004. Revised version of the original Technical Report DAIMI FN-19, Aarhus University, 1981. https://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdfGoogle Scholar
Rabin, M. O., and Lehmann, D., The advantages of free choice: A symmetric and fully distributed solution to the dining philosophers problem, in: Roscoe, A. W. (Ed.), A Classical Mind: Essays in Honor of C.A.R. Hoare, 333352, Prentice Hall, 1994.Google Scholar
Rabin, M.O., and Scott, D., Finite automata and their decision problems, IBM Journal of Research and Development 3(2):114125, 1959.http://doi:10.1147/rd.32.0114CrossRefGoogle Scholar
Rabinovich, A., and Trakhtenbrot, B.A., Behavior structures and nets. Fundamenta Informaticae 11(4):357403, 1988. https://doi:10.3233/FI-1988-11404CrossRefGoogle Scholar
Reisig, W., Petri Nets: An Introduction, EATCS Monographs in Theoretical Computer Science, Springer, 1985.http://doi:10.1007/978-3-642-69968-9CrossRefGoogle Scholar
Reisig, W., Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets, Springer, 1998.http://doi:10.1007/978-3-662-03687-7CrossRefGoogle Scholar
Reisig, W., and Rozenberg, G., (Eds.), Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science 1491, Springer, 1998.http://doi:10.1007/3-540-65306-6Google Scholar
Reisig, W., and Rozenberg, G., (Eds.), Lectures on Petri Nets II: Applications, Lecture Notes in Computer Science 1492, Springer, 1998.http://doi:10.1007/3-540-65307-4Google Scholar
Rozenberg, G., and Engelfriet, J., Elementary net systems, in [101], 12–121, 1998.http://doi:10.1007/3-540-65306-614CrossRefGoogle Scholar
Salomaa, A., Two complete axiom systems for the algebra of regular events, Journal of the ACM 13(1):158169, 1966.http://doi:10.1145/321312.321326CrossRefGoogle Scholar
Sangiorgi, D., An Introduction to Bisimulation and Coinduction, Cambridge University Press, 2012.http://doi:10.1017/CBO9780511777110Google Scholar
Sangiorgi, D., and Walker, D., The π-calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.http://doi:10.5555/559050CrossRefGoogle Scholar
Stockmeyer, L.J., and Meyer, A.R., Word problems requiring exponential time, In Procs. 5th Annual ACM Symposium on Theory of Computing (STOC’73), 19, ACM Press, 1973.http://doi:10.1145/800125.804029Google Scholar
Thong, W.J., and Ameedeen, M. A., A survey of Petri net tools, in Advanced Computer and Communication Engineering Technology, Lecture Notes in Electrical Engineering 315, 537551, Springer, 2015.http://doi:10.1007/978-3-319-07674-4 51CrossRefGoogle Scholar
Valmari, A., Simple bisimilarity minimization in O (m log n) time, Fundamenta Informaticae 105(3):319339, 2010.http://doi:10.3233/FI-2010-369CrossRefGoogle Scholar
Valk, R., and Vidal-Naquet, G., Petri nets and regular languages, Journal of Computer and System Sciences 23(3):299325, 1981.http://doi:10.1016/0022-0000(81)90067-2CrossRefGoogle Scholar
Versari, C., Busi, N., and Gorrieri, R., An expressiveness study of priority in process calculi, Mathematical Structures in Computer Science 19(6):11611189, 2009.http://doi:10.1017/S0960129509990168CrossRefGoogle Scholar
Vogler, W., Deciding history preserving bisimilarity. In Automata, Languages and Programming (ICALP ’91), LNCS 510, 495505. Springer, 1991. http://doi:10.1007/3-540-54233-7_158CrossRefGoogle Scholar
Winskel, G., Event structures, Petri Nets: Applications and Relationships to Other Models of Concurrency, Procs . ACPN1986, LNCS 255, 325392, Springer, 1987.http://doi:10.1007/3-540-17906-2_31CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Roberto Gorrieri, Università degli Studi, Bologna, Italy
  • Book: Syntax and Semantics of Petri Nets
  • Online publication: 09 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009613316.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Roberto Gorrieri, Università degli Studi, Bologna, Italy
  • Book: Syntax and Semantics of Petri Nets
  • Online publication: 09 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009613316.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Roberto Gorrieri, Università degli Studi, Bologna, Italy
  • Book: Syntax and Semantics of Petri Nets
  • Online publication: 09 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009613316.010
Available formats
×