Published online by Cambridge University Press: 05 February 2013
Introduction
Ancient depictions of fluids, going back to the Minoans, envisaged waves and moving streams. They missed what we would call vortices and turbulence. The first artist to depict the rotational properties of fluids, vortical motion and turbulent flows was da Vinci (1506 to 1510). He would recognize the term vortical motion as it comes from the Latin vortere or vertere: to turn, meaning that vorticity is where a gas or liquid is rapidly turning or spiraling. Mathematically, one represents this effect as twists in the velocity derivative, that is the curl or the anti-symmetric component of the velocity gradient tensor. If the velocity field is u, then for the vorticity is ω = ∇ × u.
The aspect of turbulence which this chapter will focus upon is the structure, dynamics and evolution of vorticity in idealized turbulence – either the products of homogeneous, isotropic, statistically stationary states in forced, periodic simulations, or flows using idealized initial conditions designed to let us understand those states. The isotropic state is often viewed as a tangle of vorticity (at least when the amplitudes are large), an example of which is given in Fig. 2.1. This visualization shows isosurfaces of the magnitude of the vorticity, and similar techniques have been discussed before (see e.g. Pullin and Saffman, 1998; Ishihara et al., 2009; Tsinober, 2009). The goal of this chapter is to relate these graphics to basic relations between the vorticity and strain, to how this subject has evolved to using vorticity as a measure of regularity, then focus on the structure and dynamics of vorticity in turbulence, in experiments and numerical investigations, before considering theoretical explanations. Our discussions will focus upon three-dimensional turbulence.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.