Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T20:02:34.925Z Has data issue: false hasContentIssue false

6 - Suspensions of Soft Colloidal Particles

Published online by Cambridge University Press:  07 April 2021

Norman J. Wagner
Affiliation:
University of Delaware
Jan Mewis
Affiliation:
KU Leuven, Belgium
Get access

Summary

Softness has a great impact on the properties of colloidal suspensions, especially at high concentrations. Particle deformability due to crowding is responsible for elastic interactions strongly affecting the dynamical properties, which therefore differ from those of hard spheres. The universal aspects of the linear and nonlinear rheological response, based on appropriate scaling, are discussed. Different approaches to determine an effective volume fraction and its role on the low frequency plateau modulus in the glassy and jamming regimes are presented. The flow properties often follow Herschel–Bulkley behavior, with the particle microstructure and interactions affecting the yield stress and causing shear banding or wall slip in some cases. Concentrated suspensions exhibit aging and internal stresses with several common but also distinct features compared to hard sphere glasses. The rich state diagrams of mixtures involving soft colloidal glasses and additives (linear polymers, soft or hard particles) suggest the possibility to tailor their flow properties, often in unprecedented ways, by means of osmotic interactions. This wealth of physical properties in relation to particle interactions can be described by different microstructural, statistical, and phenomenological models which offer a valuable predictive toolbox for understanding the complex and tunable rheology of this class of systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mewis, J, Frith, WJ, Strivens, TA, Russel, WB. The rheology of suspensions containing polymerically stabilized particles. AIChE Journal. 1989;35(3):415422.Google Scholar
Borrega, R, Cloitre, M, Betremieux, I, Ernst, B, Leibler, L. Concentration dependence of the low-shear viscosity of polyelectrolyte micronetworks: From hard sphere to soft microgels. Europhysics Letters. 1999:47(6):799835.Google Scholar
Roovers, J. Concentration dependence of the relative viscosity of star polymers. Macromolecules. 1994;27(19):53595364.CrossRefGoogle Scholar
Vlassopoulos, D, Fytas, G, Pispas, S, Hadjichristidis, N. Spherical polymer brushes viewed as soft colloidal particles: zero-shear viscosity. Physica B. 2001;296(1–3):184189.Google Scholar
Oldroyd, JG. The elastic and viscous properties of emulsions and suspensions. Proceedings of the Royal Society of London A. 1953;218(1132):122132.Google Scholar
Cloitre, M, Bonnecaze, RT. Micromechanics of soft particle glasses. Advances in Polymer Science. 2010;236:117162.Google Scholar
Seth, JR, Mohan, L, Locatelli-Champagne, C, Cloitre, M, Bonnecaze, RT. A micromechanical model to predict the flow of soft particle glasses. Nature Materials. 2011;10:838843.CrossRefGoogle ScholarPubMed
Zhang, J, Lettinga, PM, Dhont, JKG, Stiakakis, E. Direct visualization of conformation and dense packing of DNA-based soft colloids. Physical Review Letters. 2014;113(26):268303.Google Scholar
Vlassopoulos, D, Cloitre, M. Tunable rheology of dense soft deformable colloids. Current Opinion in Colloid & Interface Science. 2014;19(6):561574.Google Scholar
Riest, J, Athanasopoulou, L, Egorov, SA, Likos, CN, Ziherl, P. Elasticity of polymeric nanocolloidal particles. Scientific Reports. 2015;5:15854.Google Scholar
Conley, GM, Aebischer, P, Nöjd, S, Schurtenberger, P, Scheffold, F. Jamming and overpacking fuzzy microgels: Deformation, interpenetration, and compression. Science Advances. 2017;3(10):e1700969.CrossRefGoogle ScholarPubMed
van der Scheer, P, van de Laar, T, van der Gucht, J, Vlassopoulos, D, Sprakel, J. Fragility and strength in nanoparticle glasses. ACS Nano. 2017;11(7):67556763.Google Scholar
Bouhid de Aguiar, I, van de Laar, T, Meireles, M, Bouchoux, A, Sprakel, J, Schroën, K. Deswelling and deformation of microgels in concentrated packings. Scientific Reports. 2017;7:10223.Google Scholar
Conley, GM, Zhang, C, Aebischer, P, Harden, JL, Scheffold, F. Relationship between rheology and structure of interpenetrating, deforming and compressing microgels. Nature Communications. 2019;10:2436 .Google Scholar
Koumakis, N, Pamvouxoglou, A, Poulosa, AS, Petekidis, G. Direct comparison of the rheology of model hard and soft particle glasses. Soft Matter. 2012;8(15):42714284.CrossRefGoogle Scholar
Le Grand, F, Petekidis, G. Effects of particle softness on the rheology and yielding of colloidal glasses. Rheologica Acta. 2008;47(5–6):579590.Google Scholar
Truzzolillo, D, Vlassopoulos, D, Munam, A, Gauthier, M. Depletion gels from dense soft colloids: Rheology and thermoreversible melting. Journal of Rheology. 2014;58(5),14411462.Google Scholar
Coussot, P, Raynaud, JS, Bertrand, F, Moucheront, P, Guilbaud, JP, Huynh, HT, et al. Coexistence of liquid and solid phases in flowing soft-glassy materials. Physical Review Letters. 2002;88(21):218301.CrossRefGoogle ScholarPubMed
Ragouilliaux, A, Ovarlez, G, Shahidzadeh-Bonn, N, Herzhaft, X, Palermo, T, Coussot, P. Transition from a simple yield-stress fluid to a thixotropic material. Physical Review E. 2007;76(5):051408.Google Scholar
Möller, P, Fall, A, Chikkadi, V, Derk, D, Bonn, D. An attempt to categorize yield stress fluid behaviour. Philosophical Transactions of the Royal Society A. 2009;367:51395155.Google Scholar
Divoux, T, Tamarii, D, Barentin, C, Manneville, S. Transient shear banding in a simple yield stress fluid. Physical Review Letters. 2010;104(20):208301.Google Scholar
Cloitre, M, Borrega, R, Monti, F, Leibler, L. Glassy dynamics and flow properties of soft colloidal pastes. Physical Review Letters. 2003;90(6):068303.CrossRefGoogle ScholarPubMed
Erwin, BM, Cloitre, M, Gauthier, M, Vlassopoulos, D. Dynamics and rheology of colloidal star polymers. Soft Matter. 2010;6(12):28252833.Google Scholar
Mohan, L, Bonnecaze, RT, Cloitre, M. Microscopic origin of internal stresses in jammed soft particle suspensions. Physical Review Letters. 2013;111(26):268301.Google Scholar
Vlassopoulos, D, Fytas, G. From polymers to colloids: Engineering the dynamic properties of hairy particles. Advances in Polymer Science. 2010;236:154.Google Scholar
Abreu, D, Levant, M, Steinberg, V, Seifert, U. Fluid vesicles in flow. Advances in Colloid and Interface Science. 2014;208:2941.Google Scholar
Winkler, RG, Fedosov, DA, Gompper, G. Dynamical and rheological properties of soft colloid suspensions. Current Opinion in Colloid & Interface Science. 2014;19(6):594610.CrossRefGoogle Scholar
Fernandez-Nieves, A, Wyss, H, Mattsson, J, Weitz, DA. (eds.) Microgel Suspensions: Fundamentals and Applications. Weinheim: Wiley-VCH; 2011.CrossRefGoogle Scholar
Perez-Baena, I, Moreno, AJ, Colmenero, J, Pomposo, JA. Single-chain nanoparticles vs. star, hyperbranched and dendrimeric polymers: Effect of the nanoscopic architecture on the flow properties of diluted solutions. Soft Matter. 2014;10(47):94549459.CrossRefGoogle ScholarPubMed
Mohanty, PS, Noejd, S, van Gruijthuijsen, K, Crassous, JJ, Obiols-Rabasa, M, Schweins, R, et al. Interpenetration of polymeric microgels at ultrahigh densities. Scientific Reports. 2017;7:1487.Google Scholar
Bucknall, CB, Paul, DR. Polymer Blends: Formulation and Performance. New York: Wiley; 2000.Google Scholar
Qian, JY, Pearson, RA, Dimone, VL, El-Aasser, MS. Synthesis and application of core-shell particles as toughening agents for epoxies. Journal of Applied Polymer Science. 1995;58(2):439448.Google Scholar
Daoud, M, Cotton, JP. Star shaped polymers: A model for the conformation and its concentration dependence. Journal de Physique France. 1982;43(3):531538.Google Scholar
Birshtein, TM, Zhulina, EB. Conformations of star-branched macromolecules. Polymer. 1984;25(10):14531461.Google Scholar
Grest, GS, Fetters, LJ, Huang, JS, Richter, D. Star polymers: Experiment, theory and simulation. Advances in Chemical Physics. 1996;94:67163.Google Scholar
Lund, R, Willner, L, Stellbrink, J, Lindner, P, Richter, D. Logarithmic chain-exchange kinetics of diblock copolymer micelles. Physical Review Letters. 2006;96(6):068302.Google Scholar
Paud, F, Nicolai, T, Nicol, E, Benyaha, F, Brotton, G. Dynamic arm exchange facilitates crystallization and jamming of starlike polymers by spontaneous fine-tuning of the number of arms. Physical Review Letters. 2013;110(2):028302.CrossRefGoogle Scholar
Hamley, IW. Block Copolymers in Solution: Fundamentals and Applications. Chichester: Wiley; 2005.Google Scholar
van Ruymbeke, E, Pamvouxoglou, A, Vlassopoulos, D, Petekidis, G, Mountrichas, G, Pispas, S. Stable responsive diblock copolymer micelles for rheology control. Soft Matter. 2010;6(5):881891.Google Scholar
Ruan, Y, Gao, L, Yao, D, Zhang, K, Zhang, B, Chen, Y, et al. Polymer-grafted nanoparticles with precisely controlled structures. ACS Macro Letters. 2015;4(10):10671071.CrossRefGoogle ScholarPubMed
Halperin, A, Tirrell, M, Lodge, TP. Tethered chains in polymer microstructures. Advances in Polymer Science. 1992;100:3171.Google Scholar
Anyfantakis, M, Bourlinos, A, Vlassopoulos, D, Fytas, G, Giannelis, E, Kumar, SK. Solvent-mediated pathways to gelation and phase separation in suspensions of grafted nanoparticles. Soft Matter. 2012;5(21):52465265.Google Scholar
Zhang, Z, Pfleiderer, P, Schofield, AB, Clasen, C, Vermant, J. Synthesis and directed self-assembly of patterned anisotropic polymeric particles. Journal of the American Chemical Society. 2011;133(3):392395.Google Scholar
Crassous, JJ, Mihut, AM, Månsson, LK, Schurtenberger, P. Anisotropic responsive microgels with tuneable shape and interactions. Nanoscale. 2015;7(38):1597115982.Google Scholar
Reddy, NK, Zhanga, Z, Lettinga, MP, Dhont, JKG, Vermant, J. Probing structure in colloidal gels of thermoreversible rodlike virus particles: Rheology and scattering. Journal of Rheology. 2012;56(5):11531164.Google Scholar
Grelet, E, Rana, R. From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles. Soft Matter. 2016;12(20):46214627.CrossRefGoogle ScholarPubMed
Kang, K, Dhont, JKG. Glass transition in suspensions of charged rods: Structural arrest and texture dynamics. Physical Review Letters. 2013;110(1):015901.Google Scholar
Solomon, MJ, Spicer, PT. Microstructural regimes of colloidal rod suspensions, gels and glasses. Soft Matter 2010;6(7):13911400.CrossRefGoogle Scholar
Huang, F, Rotstein, R, Fraden, S, Kasza, KE, Flynn, NT. Phase behavior and rheology of attractive rod-like particles. Soft Matter. 2009;5(14):27662771.CrossRefGoogle Scholar
Verso, FL, Likos, CN. End-functionalized polymers: Versatile building blocks for soft materials. Polymer. 2008;49(6):14251434.Google Scholar
Bianchi, E, Blaak, R, Likos, CN. Patchy colloids: State of the art and perspectives. Physical Chemistry Chemical Physics. 2011;13(14):63976410.Google Scholar
Moghimi, E, Chubak, I, Statt, A, Howard, MP, Founta, D, Polymeropoulos, G, et al. Self-organization and flow of low-functionality telechelic star polymers with varying attraction. ACS Macro Letters. 2019;8(7):766772.CrossRefGoogle ScholarPubMed
Schlüter, AD, Halperin, A, Kröger, M, Vlassopoulos, D, Wegner, G, Zhang, B. Dendronized polymers: Molecular objects between conventional linear polymers and colloidal particles. ACS Macro Letters. 2014;3(10):991998.Google Scholar
De Gennes, PG, Prost, J. Physics of Liquid Crystals. Oxford: Oxford University Press; 1994.Google Scholar
Eichenbaum, GM, Kiser, PF, Dobrynin, AV, Simon, SA, Needham, D. Investigation of the swelling response and loading of ionic microgels with drugs and proteins:  The dependence on cross-link density. Macromolecules. 1999;32(15):48674878.CrossRefGoogle Scholar
Vlassopoulos, D. Molecular topology and rheology: Beyond the tube model. Rheologica Acta. 2016;55(8):613632.Google Scholar
Roovers, J, Zhou, LL, Toporowski, PM, van der Zwan, M, Iatrou, H, Hadjichristidis, N. Regular star polymers with 64 and 128 arms: Models for polymeric micelles. Macromolecules. 1993;26(16):43244331.Google Scholar
Kapnistos, M, Semenov, AN, Vlassopoulos, D, Roovers, J. Viscoelastic response of hyperstar polymers in the linear regime. Journal of Chemical Physics. 1999;111(4):17531759.Google Scholar
Vlassopoulos, D, Fytas, G, Pakula, T, Roovers, J. Multiarm star polymer dynamics. Journal of Physics: Condensed Matter. 2001;13(41):R855R876.Google Scholar
Gury, L, Gauthier, M, Cloitre, M, Vlassopoulos, D. Colloidal jamming in multiarm star polymer melts. Macromolecules. 2019;52(12):46174623.Google Scholar
Sebastian, JM, Lai, C, Graessley, WW, Register, RA. Steady-shear rheology of block copolymer melts and concentrated solutions: Disordering stress in body-centered-cubic systems. Macromolecules. 2002;35(7):27072713.Google Scholar
Antonietti, M, Pakula, T, Bremser, W. Rheology of small spherical polystyrene microgels: A direct proof of a new transport mechanism in bulk polymers besides reptation. Macromolecules 1995;28(12):42274233.CrossRefGoogle Scholar
Bourlinos, AB, Herrera, R, Chalkias, N, Jiang, DD, Zhang, Q, Archer, LA, et al. Surface-functionalized nanoparticles with liquid-like behavior. Advanced Materials. 2005;17(2):234237.Google Scholar
Pursiainen, OLJ, Baumberg, JJ, Winkler, H, Viel, B, Spahn, P, Ruhl, T. Shear-induced organization in flexible polymer opals. Advanced Materials. 2008;20(8):14841487.Google Scholar
Hasegawa, R, Aoki, Y, Doi, M. Optimum graft density for dispersing particles in polymer melts. Macromolecules. 1996;29(20):66566662.Google Scholar
Ferreira, PG, Ajdari, A, Leibler, L. Scaling law for entropic effects at interfaces between grafted layers and polymer melts. Macromolecules. 1998;31(12):39944003.CrossRefGoogle Scholar
Chremos, A, Panagiotopoulos, AZ, Koch, DL. Dynamics of solvent-free grafted nanoparticles. Journal of Chemical Physics. 2012;136(4):044902.Google Scholar
Kim, SA, Mangal, R, Archer, LA. Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules. 2015;48(17):62806293.CrossRefGoogle Scholar
Snijkers, F, Cho, HY, Nese, A, Matyjaszewski, K, Pyckhout-Hintzen, W, Vlassopoulos, D. Effects of core microstructure on structure and dynamics of star polymer melts: From polymeric to colloidal response. Macromolecules. 2014;47(15):53475356.Google Scholar
Landau, LD, Lifshitz, EM. Theory of Elasticity, 3rd ed. Amsterdam: Elsevier; 1986.Google Scholar
Likos, CN. Effective interactions in soft condensed matter physics. Physics Reports. 2001;348(4–5):267439.Google Scholar
Likos, CN, Loewen, H, Watzlawek, M, Abbas, B, Jucknischke, O, Allgaier, J, et al. Star polymers viewed as ultrasoft colloidal particles. Physical Review Letters. 1998;80(20):44504453.Google Scholar
Laurati, M, Stellbrink, J, Lund, R, Willner, L, Richter, D. Starlike micelles with starlike interactions: A quantitative evaluation of structure factors and phase diagram. Physical Review Letters. 2005;94(19):195504.Google Scholar
Briels, WJ. Transient forces in flowing soft matter. Soft Matter. 2009;5(22):44014411.Google Scholar
Likos, CN, Vaynberg, KA, Löwen, H, Wagner, NJ. Colloidal stabilization by adsorbed gelatin. Langmuir. 2000;16(9):41004108.Google Scholar
Likos, CN, Loewen, H, Poppe, A, Willner, L, Roovers, J, Cubitt, B, et al. Ordering phenomena of star polymer solutions approaching the Θ state. Physical Review E. 1998;58(5):62996307.Google Scholar
Marzi, D, Likos, CN, Capone, B. Coarse graining of star-polymer-colloid nanocomposites. Journal of Chemical Physics. 2012;137(1):014902.Google Scholar
Mahynski, NA, Panagiotopoulos, AZ. Phase behavior of athermal colloid-star polymer mixtures. Journal of Chemical Physics. 2013;139(2):024907.Google Scholar
Poon, WCK, Weeks, ER, Royall, CP. On measuring colloidal volume fractions. Soft Matter. 2012;8 (1):2130.Google Scholar
Senff, H, Richtering, W. Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres. Journal of Chemical Physics. 1999;111(4):705711.CrossRefGoogle Scholar
Romeo, G, Imperiali, L, Kim, J-W, Fernandez-Nieves, A, Weitz, DA. Origin of de-swelling and dynamics of dense ionic microgel suspensions. Journal of Chemical Physics. 2012;136(12):124905.Google Scholar
Pellet, C, Cloitre, M. The glass and jamming transitions of soft polyelectrolyte microgel suspensions. Soft Matter. 2016;12(16):37103720.Google Scholar
Stiakakis, E, Petekidis, G, Vlassopoulos, D, Likos, CN, Iatrou, H, Hadjichristidis, N, et al. Depletion and cluster formation in soft colloid-polymer mixtures. Europhysics Letters. 2005;72(4):664670.Google Scholar
Wilk, A, Huissmann, S, Stiakakis, E, Kohlbrecher, J, Vlassopoulos, D, Likos, CN, et al. Osmotic shrinkage in star/linear polymer mixtures. The European Physical Journal E. 2010;32(2):127134.Google Scholar
Truzzolillo, D, Vlassopoulos, D, Gauthier, M. Osmotic interactions, rheology, and arrested phase separation of star-linear polymer mixtures. Macromolecules. 2011;44(12):50435052.CrossRefGoogle Scholar
Fernández-Nieves, A, Fernández-Barbero, A, Vincent, B, de las Nieves, FJ. Osmotic de-swelling of ionic microgel particles. Journal of Chemical Physics. 2003;119(19):1038310388.Google Scholar
Routh, AF, Fernandez-Nieves, A, Bradley, M, Vincent, B. Effect of added free polymer on the swelling of neutral microgel particles:  A thermodynamic approach. Journal of Physical Chemistry B. 2006;110(25):1272112727.Google Scholar
Fernandez-Nieves, A, Lyon, LA. The polymer/colloid duality of microgel suspensions. Annual Review of Physical Chemistry. 2012;63:2543.Google Scholar
Ikeda, A, Berthier, L, Sollich, P. Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter. 2013;9(32):76697683.Google Scholar
Scheffold, F, Cardinaux, F, Mason, TG. Linear and nonlinear rheology of dense emulsions across the glass and the jamming regimes. Journal of Physics: Condensed Matter. 2013;25(50):502101.Google Scholar
Ghosh, A, Chaudhary, G, Kang, JG, Braun, PW, Ewoldt, RH, Schweizer, KS. Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions. Soft Matter. 2019;15(5):10381052.Google Scholar
Basu, A, Xu, Y, Still, T, Arratia, PE, Zhang, Z, Nordstrom, KN, et al. Rheology of soft colloids across the onset of rigidity: Scaling behavior, thermal, and non-thermal responses. Soft Matter. 2010;10(17):30273035.Google Scholar
Witten, TA, Pincus, PA. Colloid stabilization by long grafted polymers. Europhysics Letters. 1986;19(10):25092513.Google Scholar
McConnell, GA, Gast, AP, Huang, JC, Smith, SD. Disorder–order transitions in soft-sphere polymer micelles. Physical Review Letters. 1993;71(13):21022105.Google Scholar
Mortensen, K. Structural studies of aqueous solutions of PEO–PPO–PEO triblock copolymers, their micellar aggregates and mesophases; a small-angle neutron scattering study. Journal of Physics: Condensed Matter. 1996;8(25A):103124.Google Scholar
Stiakakis, E, Wilk, A, Kohlbrecher, J, Vlassopoulos, D, Petekidis, G. Slow dynamics, aging and crystallization of multiarm star glasses. Physical Review E. 2010;81(2):0205402 (R).Google Scholar
Rissanou, AN, Yiannourakou, M, Economou, IG, Bitsanis, IA. Temperature-induced crystallization in concentrated suspensions of multiarm star polymers: A molecular dynamics study. Journal of Chemical Physics. 2006;124(4):044905.Google Scholar
McConnell, GA, Lin, MY, Gast, AP. Long range order in polymeric micelles under steady shear. Macromolecules. 1995;28(20):67546764.Google Scholar
Molino, FR, Berret, J-F, Porte, G, Diat, O, Lindner, P. Identification of flow mechanisms for a soft crystal. The European Physical Journal B. 1998;3(1):5972.Google Scholar
Mortensen, K, Theunissen, E, Kleppinger, R, Almdal, K, Reynaers, H. Shear-induced morphologies of cubic ordered block copolymer micellar networks studied by in-situ small-angle neutron scattering and rheology. Macromolecules. 2002;35(20):77737781.Google Scholar
Hamley, IW. The effect of shear on block copolymer solutions. Current Opinion in Colloid & Interface Science. 2000;5;342–50.Google Scholar
Jiang, J, Burger, C, Li, C, Li, J, Lin, MY, Colby, RH, et al. Shear-induced layered structure of polymeric micelles by SANS. Macromolecules. 2007;40(11):40164022.Google Scholar
Ruiz-Franco, J, Marakis, N, Gnan, N, Kohlbrecher, J, Gauthier, M, Lettinga, MP, et al. Crystal-to-crystal transition in star colloids under shear. Physical Review Letters. 2018;120(7):078003.Google Scholar
Chu, F, Heptner, N, Lu, Y, Siebenbürger, M, Lindner, P, Dzubiella, J, et al. Colloidal plastic crystals in a shear field. Langmuir. 2015;31(22):59926000.Google Scholar
Paulin, SE, Ackerson, BJ, Wolfe, MS. Equilibrium and shear induced nonequilibrium phase behavior of PMMA microgel spheres. Journal of Colloid and Interface Science. 1996;178(1):251262.Google Scholar
Stieger, M, Lindner, P, Richtering, W. Structure formation in thermoresponsive microgel suspensions under shear flow. Journal of Physics: Condensed Matter. 2004;16(36):S3861–3872.Google Scholar
Freiberger, N, Medebach, M, Glatter, O. Melting behavior of shear-induced crystals in dense emulsions as investigated by time-resolved light scattering. The Journal of Physical Chemistry B. 2008;112(40):1263512643.Google Scholar
Huang, J-R, Mason, TG. Shear oscillation light scattering of droplet deformation and reconfiguration in concentrated emulsions. Europhysics Letters. 2008;83(2):28004.Google Scholar
Huang, J-R, Mason, TG. Deformation, restructuring, and un-jamming of concentrated droplets in large-amplitude oscillatory shear flows. Soft Matter. 2009;5(2):22082214.Google Scholar
Snoswell, DRE, Finlayson, CE, Zhao, O, Baumberg, JJ. Real-time measurements of crystallization processes in viscoelastic polymeric photonic crystals. Physical Review E. 2015;92(5):052315.CrossRefGoogle ScholarPubMed
Khabaz, F, Liu, T, Cloitre, M, Bonnecaze, RT. Shear-induced ordering and crystallization of jammed suspensions of soft particles glasses. Physical Review Fluids. 2017;2(9):093301.Google Scholar
Khabaz, F, Cloitre, M, Bonnecaze, RT. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow. Physical Review Fluids. 2018;3(3):033301.Google Scholar
López-Barrón, CR, Porcar, L, Eberle, APR, Wagner, NJ. Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow. Physical Review Letters. 2012;108(25):258301.Google Scholar
Zhao, Q, Finlayson, CE, Snoswel, DRE, Haines, A, Schäfer, C, Spahn, P, et al. Large-scale ordering of nanoparticles using viscoelastic shear processing. Nature Communications. 2016;7:11661.Google Scholar
Nikoubashman, A, Kahl, G, Likos, CN. Flow quantization and nonequilibrium nucleation of soft crystals. Soft Matter. 2012;8(15):41214131.Google Scholar
Taylor, GI. The viscosity of a fluid containing small drops of another fluid. Proceedings of the Royal Society of London A. 1932;138(834):4148.Google Scholar
Fröhlich, H, Sack, R. Theory of the rheological properties of dispersions. Proceedings of the Royal Society of London A. 1946;185(1003):415430.Google Scholar
Cerf, R. Recherches théoriques et expérimentales sur l’effet Maxwell des solutions de macromolécules déformables. Journal de Chimie Physique. 1951;48:5984.Google Scholar
Oldroyd, JG. The effect of interfacial stabilizing films on the elastic and viscous properties of emulsions. Proceedings of the Royal Society of London A. 1955;232(1191):567577.Google Scholar
Oldroyd, JG. On the formulation of rheological equations of state. Proceedings of the Royal Society of London A. 1950;200(1063):523541.Google Scholar
Kerner, EH. The elastic and thermoelastic properties of composite media. Proceedings of the Physical Society. Section B. 1956;69(8):808813.Google Scholar
Frankel, NA, Acrivos, A. The constitutive equation for a dilute emulsion. Journal of Fluid Mechanics. 1970;44(1):6578.Google Scholar
Goddard, JD, Miller, C. Nonlinear effects in the rheology of dilute suspensions. Journal of Fluid Mechanics. 1967;28(4):657663.Google Scholar
Choi, SJ, Schowalter, WR. Rheological properties of nondilute suspensions of deformable particles. Physics of Fluids. 1975;18(4):420427.Google Scholar
Palierne, JF. Linear rheology of viscoelastic emulsions with interfacial tension. Rheologica Acta. 1990;29(3):204–14; erratum Rheologica Acta. 1991;30(5):497.Google Scholar
Vinckier, I, Moldenaers, P, Mewis, J. Relationship between rheology and morphology of model blends in steady shear flow. Journal of Rheology. 1996;40(4):613631.Google Scholar
Bousmina, M. Rheology of polymer blends: Linear model for viscoelastic emulsions. Rheologica Acta. 1999;38(1):7383.CrossRefGoogle Scholar
Segrè, PN, Meeker, SP, Pusey, PN, Poon, WCK. Viscosity and structural relaxation in suspensions of hard-sphere colloids. Physical Review Letters. 1995;75(5):958961.Google Scholar
Loppinet, B, Fytas, G, Vlassopoulos, D, Likos, CN, Meier, G, Liu, GJ. Dynamics of dense suspensions of star-like micelles with responsive fixed cores. Macromolecular Chemistry and Physics. 2005;206(1):163172.Google Scholar
Dahbi, L, Alexander, M, Trappe, V, Dhont, JKG, Schurtenberger, P. Rheology and structural arrest of casein suspensions. Journal of Colloid and Interface Science. 2010;34(2):564570.Google Scholar
Cloitre, M, Borrega, R, Monti, F, Leibler, L. Structure and flow behaviour of polyelectrolyte microgels: from suspensions to glasses. Comptes Rendus Physique. 2003;4(2):221230.Google Scholar
Gupta, S, Stellbrink, J, Zaccarelli, E, Likos, CN, Camargo, M, Holmqvist, P, et al. Validity of the Stokes–Einstein relation in soft colloids up to the glass transition. Physical Review Letters. 2015;115(12):28302.Google Scholar
Angell, CA. Formation of glasses from liquids and biopolymers. Science. 1995;267(5206):19241935.Google Scholar
Mattsson, J, Wyss, HM, Fernandez-Nieves, A, Miyazaki, K, Hu, Z, Reichman, DR, et al. Soft colloids make strong glasses. Nature. 2009;462:8386.Google Scholar
Neuhaeusler, S, Richtering, W. Rheology and diffusion in concentrated sterically stabilized polymer dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1995;96(1):3951.Google Scholar
Helgeson, ME, Wagner, NJ, Vlassopoulos, D. Viscoelasticity and shear melting of colloidal star polymer glasses. Journal of Rheology. 2007;51(2):297316.Google Scholar
Erwin, BM, Vlassopoulos, D, Cloitre, M. Rheological fingerprinting of an aging soft colloidal glass. Journal of Rheology. 2010;54(4):915939.Google Scholar
Wen, YH, Schaefer, JL, Archer, LA. Dynamics and rheology of soft colloidal glasses. ACS Macro Letters. 2015;4(1):119123.Google Scholar
Merlet-Lacroix, N, Cloitre, M. Swelling and rheology of thermoresponsive gradient copolymer micelles. Soft Matter. 2010;6(5):984993.Google Scholar
Seth, JR, Cloitre, M, Bonnecaze, RT. Elastic properties of soft particle pastes. Journal of Rheology. 2006;50(3):353376.Google Scholar
Yang, J, Schweizer, KS. Tunable dynamic fragility and elasticity in dense suspensions of many-arm-star polymer colloids. Europhysics Letters. 2010;90(6):66001.Google Scholar
Mason, TG, Lacasse, M-D, Grest, GS, Levine, D, Bibette, J, Weitz, DA. Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Physical Review E. 1997:56(3):31503166.CrossRefGoogle Scholar
Mohan, L, Bonnecaze, RT. Short-ranged pair distribution function for concentrated suspensions of soft particles. Soft Matter. 2012;8(15):42164222.Google Scholar
Kapnistos, M, Vlassopoulos, D, Fytas, G, Mortensen, K, Fleischer, G, Roovers, J. Reversible thermal gelation in soft spheres. Physical Review Letters. 2000;85(19);40724075.Google Scholar
Agarwal, P, Srivastava, S, Archer, LA. Thermal jamming of a colloidal glass. Physical Review Letters. 2011;107(26):268302.Google Scholar
Sato, T, Watanabe, H, Osaki, K. Thermoreversible physical gelation of block copolymers in a selective solvent. Macromolecules. 2005;33(5):16861691.Google Scholar
Zhao, Y, Cao, Y, Yang, Y, Wu, C. Rheological study of the sol-gel transition of hybrid gels. Macromolecules. 2003;36(3):855859.Google Scholar
Crassous, JJ, Casal-Dujat, L, Medebach, M, Obiols-Rabasa, M, Vincent, R, Reinhold, F, et al. Structure and dynamics of soft repulsive colloidal suspensions in the vicinity of the glass transition. Langmuir. 2013;29(33):1034610359.Google Scholar
Peng, X, McKenna, GB. Comparison of the physical aging behavior of a colloidal glass after shear melting and concentration jumps. Physical Review E. 2014;90(1):050301(R).Google Scholar
Peng, X, McKenna, GB. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions. Physical Review E. 2016;93(4):042603.Google Scholar
Siebenbürger, M, Fuchs, M, Winter, H, Ballauff, M. Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory. Journal of Rheology. 2009;53(3):707726.Google Scholar
Nordstrom, KN, Arratia, PE, Verneuil, E, Basu, A, Zhang, Z, Yodh, AG, et al. Microfluidic rheology of soft colloids above and below jamming. Physical Review Letters. 2010;105(17):175701.Google Scholar
Paredes, J, Michels, MAJ, Bonn, D. Rheology across the zero-temperature jamming transition. Physical Review Letters. 2013;111(1):015701.Google Scholar
Fujii, S, Richtering, W. Size and viscoelasticity of spatially confined multilamellar vesicles. The European Physical Journal E. 2006;19(2):139148.Google Scholar
Gutowski, IA, Lee, D, de Bruyn, JR, Frisken, BJ. Scaling and mesostructure of Carbopol dispersions. Rheologica Acta. 2012;51(5):441450.Google Scholar
Shafiei, M, Balhoff, M, Hayman, NW. Chemical and microstructural controls on viscoplasticity in carbopol hydrogel. Polymer. 2018;139:4451.Google Scholar
Rogers, SA, Vlassopoulos, D, Callaghan, PT. Aging, yielding, and shear banding in soft colloidal glasses. Physical Review Letters. 2008;100(12):128304.Google Scholar
Hyun, K, Wilhelm, M, Klein, CO, Cho, KS, Nam, JG, Ahn, KH, et al. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science. 2011;36(12):16971753.Google Scholar
Rogers, S. Large amplitude oscillatory shear: Simple to describe, hard to interpret. Physics Today. 2018;71(7):3440.Google Scholar
Koumakis, N, Petekidis, G. Two step yielding in attractive colloids: Transition from gels to attractive glasses. Soft Matter. 2011;7(6):456470.Google Scholar
Koumakis, N, Brady, JF, Petekidis, G. Complex oscillatory yielding of model hard-sphere glasses. Physical Review Letters. 2013;110(17):178301.Google Scholar
Rogers, S, Erwin, BM, Vlassopoulos, D, Cloitre, M. A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid. Journal of Rheology. 2011;55(2):435458.Google Scholar
Mohan, L, Pellet, C, Cloitre, M, Bonnecaze, RT. Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology. Journal of Rheology. 2013;57(3):10231046.Google Scholar
Dhont, JKG, Lettinga, MP, Dogic, Z, Lenstra, TAJ, Wang, H, Rathgeber, S, et al. Shear-banding and microstructure of colloids in shear flow. Faraday Discussions. 2003;123:157172.Google Scholar
Kundu, SK, Gupta, S, Stellbrink, J, Willner, L, Richter, D. Relating structure and flow of soft colloids. The European Physical Journal Special Topics. 2013;222(11):27572772.Google Scholar
Misbah, C. Vacillating breathing and tumbling of vesicles under shear flow. Physical Review Letters. 2006;96(2):028104.Google Scholar
Gao, T, Hu, HH, Castañeda, PP. Shape dynamics and rheology of soft elastic particles in a shear flow. Physical Review Letters. 2012;108(5):058302.Google Scholar
Fuchs, M, Cates, ME. Theory of nonlinear rheology and yielding of dense colloidal suspensions. Physical Review Letters. 2002;89(24):248304.Google Scholar
Fuchs, M, Cates, ME. A mode coupling theory for Brownian particles in homogeneous steady shear flow. Journal of Rheology. 2009;53(4):9571000.Google Scholar
Crassous, JJ, Regisser, R, Ballauff, M, Willenbacher, N. Characterization of the viscoelastic behavior of complex fluids using the piezoelastic axial vibrator. Journal of Rheology. 2005;49(4):851863.Google Scholar
Kobelev, V, Schweizer, KS. Dynamic yielding, shear thinning, and stress rheology of polymer-particle suspensions and gels. Journal of Chemical Physics. 2005;123(16):164903.Google Scholar
Siebenbürger, M, Ballauff, M, Voigtmann, T. Creep in colloidal glasses. Physical Review Letters. 2012;108(25):255701.Google Scholar
Ballauff, M, Brader, JM, Egelhaaf, SU, Fuchs, M, Horbach, J, Koumakis, N, et al. Residual stresses in glasses. Physical Review Letters. 2013;110(21):215701.Google Scholar
van Hecke, M. Jamming of soft particles: Geometry, mechanics, scaling and isostaticity. Journal of Physics: Condensed Matter. 2010;22(3):033101.Google Scholar
Bonn, D, Paredes, J, Denn, MM, Berthier, L, Divoux, T, Manneville, S. Yield stress materials in soft condensed matter. Reviews of Modern Physics. 2017;89(3):035005.Google Scholar
Knowlton, ED, Pine, DJ, Cipelletti, L. A microscopic view of the yielding transition in concentrated emulsions. Soft Matter. 2014;10(36):69316940.Google Scholar
Liu, T, Khabaz, F, Bonnecaze, RT, Cloitre, M. On the universality of flow properties of soft-particle glasses. Soft Matter. 2018;14(34):70647074.Google Scholar
Voigtmann, T. Nonlinear glassy rheology. Current Opinion in Colloid & Interface Science 2014;19(6):549560.Google Scholar
Sollich, P, Lequeux, F, Hébraud, P, Cates, ME. Rheology of soft glassy materials. Physical Review Letters. 1997;78(10):20202023.CrossRefGoogle Scholar
Sollich, P. Rheological constitutive equation for a model of soft glassy materials. Physical Review E. 1998;58(1):738759.Google Scholar
Purnomo, EH, van den Ende, D, Mellema, J, Mugele, F. Linear viscoelastic properties of aging suspensions. Europhysics Letters. 2006;76(1):7480.Google Scholar
Fielding, SM. Shear banding in soft glassy materials. Reports on Progress in Physics. 2014;77(10):102601.Google Scholar
Purnomo, EH, van den Ende, D, Mellema, J, Mugele, F. Rheological properties of aging thermosensitive suspensions. Physical Review E. 2007;76(2):021404.Google Scholar
Fielding, SM, Sollich, P, Cates, ME. Aging and rheology in soft materials. Journal of Rheology. 2000;44(2):323369.Google Scholar
Fielding, SM, Cates, ME, Sollich, P. Shear banding, aging and noise dynamics in soft glassy materials. Soft Matter. 2009;5(12):23782382.Google Scholar
Derec, C, Ajdari, A, Lequeux, F. Rheology and aging: A simple approach. The European Physical Journal E. 2001;4(3):355361.Google Scholar
Derec, C, Ducouret, G, Ajdari, A, Lequeux, F. Aging and nonlinear rheology in suspensions of polyethylene oxide–protected silica particles. Physical Review E. 2003;67(6):061403.Google Scholar
Carrier, V, Petekidis, G. Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. Journal of Rheology. 2009;53(2):245273.Google Scholar
Picard, G, Ajdari, A, Bocquet, L, Lequeux, F. Simple model for heterogeneous flows of yield stress fluids. Physical Review E. 2002;66(5):051501.Google Scholar
Goyon, J, Colin, A, Ovarlez, G, Ajdari, A, Bocquet, L. Spatial cooperativity in soft glassy flows. Nature. 2008;454:8487.Google Scholar
Langer, JS. Shear-transformation-zone theory of yielding in athermal amorphous materials. Physical Review E. 2015;92(1):012318.Google Scholar
Hébraud, P, Lequeux, F. Mode-coupling theory for the pasty rheology of soft glassy materials. Physical Review Letters. 1998;81(14):29342937.Google Scholar
Picard, G, Ajdari, A, Lequeux, F, Bocquet, L. Slow flows of yield stress fluids: Complex spatiotemporal behavior within a simple elastoplastic model. Physical Review E. 2005;71(1):010501.Google Scholar
Bocquet, L, Colin, A, Ajdari, A. Kinetic theory of plastic flow in soft glassy materials. Physical Review Letters. 2009;103(3):036001.Google Scholar
Nicolas, A, Barrat, J-L. Spatial cooperativity in microchannel flows of soft jammed materials: A mesoscopic approach. Physical Review Letters. 2013;110(13):138304.Google Scholar
Puosi, F, Olivier, J, Martens, K. Probing relevant ingredients in mean-field approaches for the athermal rheology of yield stress materials. Soft Matter 2015;11(38):76397647.Google Scholar
Liu, C, Ferrero, EE, Puosi, F, Barrat, J-L, Martens, K. Driving rate dependence of avalanche statistics and shapes at the yielding transition. Physical Review Letters. 2016;116(6):065501.Google Scholar
Agoritsas, E, Martens, K. Non-trivial rheological exponents in sheared yield stress fluids. Soft Matter. 2017;13(26):46534660.Google Scholar
Lin, J, Wyart, M. Microscopic processes controlling the Herschel–Bulkley exponent. Physical Review Fluids. 2018;97(1):012603.Google Scholar
Durian, DJ. Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches. Physical Review E. 1997;55(2);17391751.Google Scholar
Tighe, BP, Woldhuis, E, Remmers, JJC, van Saarloos, W, van Hecke, M. Model for the scaling of stresses and fluctuations in flows near jamming. Physical Review Letters. 2010;105(8):088303.Google Scholar
Mansard, V, Colin, A, Chaudhuri, P, Bocquet, L. A molecular dynamics study of non-local effects in the flow of soft jammed particles. Soft Matter. 2013;9(31):74897500.Google Scholar
Cloitre, M, Bonnecaze, RT. A review on wall slip in high solid dispersions. Rheologica Acta. 2017;56(3):283305.Google Scholar
Seth, JR, Cloitre, M, Bonnecaze, RT. Influence of short-range forces on wall-slip in microgel pastes. Journal of Rheology. 2008;52(5):12411268.Google Scholar
Seth, JR, Locatelli-Champagne, C, Monti, F, Bonnecaze, RT, Cloitre, M. How do soft particle glasses yield and flow near solid surfaces. Soft Matter. 2012;8(1):140148.Google Scholar
Ballesta, P, Petekidis, G, Isa, L, Poon, WCK, Besseling, R. Wall slip and flow of concentrated hard-sphere colloidal suspensions. Journal of Rheology. 2012;56(5):10051037.Google Scholar
Dhont, JKG, Kang, K, Kriegs, H, Danko, O, Marakis, J, Vlassopoulos, D. Nonuniform flow in soft glasses of colloidal rods. Physical Review Fluids. 2017;2(4):043301.CrossRefGoogle Scholar
Besseling, R, Isa, L, Ballesta, P, Petekidis, G, Cates, ME, Poon, WCK. Shear banding and flow-concentration coupling in colloidal glasses. Physical Review Letters. 2010;105(26):268301.Google Scholar
Jin, H, Kang, K, Ahn, K-H, Dhont, JKG. Flow instability due to coupling of shear-gradients with concentration: Non-uniform flow of (hard-sphere) glasses. Soft Matter. 2014;10(47):94709485.Google Scholar
Cromer, M, Villet, MC, Fredrickson, GH, Leal, LG. Shear banding in polymer solutions. Physics of Fluids. 2013;25(5):051703.Google Scholar
Cromer, M, Fredrickson, GH, Leal, LG. A study of shear banding in polymer solutions. Physics of Fluids. 2014;26(6):063101.Google Scholar
Dhont, JKG, Briels, WJ. Gradient and vorticity banding. Rheologica Acta. 2008;47(3):257281.Google Scholar
Olmsted, PD. Perspectives on shear banding in complex fluids. Rheologica Acta. 2008;47(3):283300.Google Scholar
Divoux, T, Fardin, MA, Manneville, S, Lerouge, S. Shear banding of complex fluids. Annual Review of Fluid Mechanics. 2016;48:81103.Google Scholar
Briels, WJ, Vlassopoulos, D, Kang, K, Dhont, JKG. Constitutive equations for the flow behavior of entangled polymeric systems: Application to star polymers. Journal of Chemical Physics 2011;134(12):124901.Google Scholar
Ovarlez, G, Rodts, S, Chateau, X, Coussot, P. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheologica Acta. 2009;48(8):831844.Google Scholar
Tang, H, Kochetkova, T, Kriegs, H, Dhont, JKG, Lettinga, MP. Shear-banding in entangled xanthan solutions: Tunable transition from sharp to broad shear-band interfaces. Soft Matter. 2018;14(5):826836.Google Scholar
Coussot, P, Ovarlez, G. Physical origin of shear-banding in jammed systems. The European Physical Journal E. 2010;33(3):183188.Google Scholar
Joshi, YM, Petekidis, G. Yield stress fluids and ageing. Rheologica Acta. 2018;57(6–7):521549.Google Scholar
Cloitre, M, Borrega, R, Leibler, L. Aging and rejuvenation in microgel pastes. Physical Review Letters. 2000;95(22):48194822.Google Scholar
Di, X, Win, KZ, McKenna, GB, Narita, T, Lequeux, F, Pullela, SR, et al. Signatures of structural recovery in colloidal glasses. Physical Review Letters. 2011;106(9):095701.Google Scholar
Bonn, D, Tanaka, H, Wegdam, G, Kellay, H, Meunier, J. Aging of a colloidal “Wigner” glass. Europhysics Letters. 1999;45(1):5257.Google Scholar
Knaebel, A, Bellour, M, Munch, J-P, Viasnoff, V, Lequeux, F, Harden, JL. Aging behavior of Laponite clay particle suspensions. Europhysics Letters. 2000;52(1):7379.Google Scholar
Abou, A, Bonn, D, Meunier, J. Aging dynamics in a colloidal glass of laponite. Physical Review E. 2001;64(2):021911.Google Scholar
Bonn, D, Tanase, S, Abou, B, Tanaka, H, Meunier, J. Laponite: Aging and shear rejuvenation of a colloidal glass. Physical Review Letters. 2002;89(1):015701.Google Scholar
Shahin, A, Joshi, YM. Prediction of long and short time rheological behavior in soft glassy materials. Physical Review Letters. 2011;106(3):038302.Google Scholar
Bandyopadhyay, R, Liang, D, Yardimci, H, Sessoms, DA, Borthwick, MA, Mochrie, SGJ, et al. Evolution of particle-scale dynamics in an aging clay suspension. Physical Review Letters. 2004;93(22):228302.Google Scholar
Srivastava, S, Archer, LA, Narayanan, S. Structure and transport anomalies in soft colloids. Physical Review Letters. 2013;110(14):148302.Google Scholar
Ramos, L, Cipelletti, L. Ultraslow dynamics and stress relaxation in the aging of a soft glassy system. Physical Review Letters. 2001;87(24):245503.Google Scholar
Ramos, L, Cipelletti, L. Intrinsic aging and effective viscosity in the slow dynamics of a soft glass with tunable elasticity. Physical Review Letters. 2005;94(15):158301.Google Scholar
Derec, C, Ajdari, A, Ducouret, G, Lequeux, F. Rheological characterization of aging in a concentrated colloidal suspension. Comptes rendus de l’Académie des Sciences IV. 2000;1(8):11151119.Google Scholar
Viasnoff, V, Lequeux, F. Rejuvenation and overaging in a colloidal glass under shear. Physical Review Letters. 2002;89(6):065701.Google Scholar
Agarwal, M, Joshi, YM. Signatures of physical aging and thixotropy in aqueous dispersion of carbopol. Physics of Fluids. 2019;31(6):063107.Google Scholar
Struik, LCE. Physical Aging in Amorphous Polymers and Other Materials. Amsterdam: Elsevier; 1978.Google Scholar
Bouchaud, JP, Cugliandolo, LF, Kurchan, J, Mézard, M. Out of equilibrium dynamics in spin-glasses and other glassy systems. In Young, AP (ed.) Spin Glasses and Random Fields. Singapore: World Scientific; 1998, pp. 161223.Google Scholar
Erwin, BM, Vlassopoulos, D, Gauthier, M, Cloitre, M. Unique slow dynamics and aging phenomena in soft glassy suspensions of multiarm star polymers. Physical Review E. 2011;83(6):061402.Google Scholar
Christopoulou, C, Petekidis, G, Erwin, BM, Cloitre, M, Vlassopoulos, D. Ageing and yield behaviour in model soft colloidal glasses. Philosophical Transactions of the Royal Society A. 2009;367(1909):50515071.Google Scholar
Cipelletti, L, Manley, S, Ramos, L, Weitz, DA. Universal aging features in the restructuring of fractal colloidal gels. Physical Review Letters. 2000;84(10):22752278.Google Scholar
Bouzid, M, Colombo, J, Vieira Barbos, L, Del Gado, E. Elastically driven intermittent microscopic dynamics in soft solids. Nature Communications. 2017;8:15846.Google Scholar
Mazoyer, S, Cipelletti, L, Ramos, L. Origin of the slow dynamics and the aging of a soft glass. Physical Review Letters. 2006;97(23):238301.Google Scholar
Jabbari-Farouji, S, Zargar, R, Wegdam, GH, Bonn, D. Dynamical heterogeneity in aging colloidal glasses of Laponite. Soft Matter. 2012;8(20):55075512.Google Scholar
Mohan, L, Cloitre, M, Bonnecaze, RT. Build-up and two-step relaxation of internal stresses in jammed suspensions. Journal of Rheology. 2015;50:6384.Google Scholar
Likos, CN. Soft matter with soft particles. Soft Matter. 2006;2(6):478498.CrossRefGoogle ScholarPubMed
Eckert, T, Bartsch, E. Re-entrant glass transition in a colloid-polymer mixture with depletion attractions. Physical Review Letters. 2002;89(12):125701.Google Scholar
Monti, F, Fu, SY, Iliopoulos, I, Cloitre, M. Doubly responsive polymer-microgel composites: Rheology and structure. Langmuir. 2008;24(20):1147411482.Google Scholar
Willenbacher, N, Vesaratchanon, JS, Thorwarth, O, Bartsch, E. An alternative route to highly concentrated, freely flowing colloidal dispersions. Soft Matter. 2011;7(12):57775788.Google Scholar
Wiemann, M, Willenbacher, N, Bartsch, E. Effect of cross-link density on re-entrant melting of microgel colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012;413:7883.Google Scholar
Schneider, M, Michels, R, Pipich, V, Goerigk, G, Sauer, V, Heim, H-P, et al. Morphology of blends with cross-linked PMMA microgels and linear PMMA chains. Macromolecules. 2013;46(22):90919103.CrossRefGoogle Scholar
Stiakakis, E, Vlassopoulos, D Likos, CN, Roovers, J, Meier, G. Polymer-mediated melting in ultrasoft colloidal gels. Physical Review Letters. 2002;89(20):208302.Google Scholar
Likos, CN, Mayer, C, Stiakakis, E, Petekidis, G. Clustering of soft colloids due to polymer additives. Journal of Physics: Condensed Matter. 2005;17:S33633369.Google Scholar
Camargo, M, Likos, CN. Phase separation in star-linear polymer mixtures. Journal of Chemical Physics. 2009;130(20):204904.Google Scholar
Camargo, M, Likos, CN. Unusual features of depletion interactions in soft polymer-based colloids mixed with linear homopolymers. Physical Review Letters. 2010;104(7):078301.Google Scholar
Lonetti, B, Camargo, M, Stellbrink, J, Likos, CN, Zaccarelli, E, Willner, L, et al. Ultrasoft colloid-polymer mixtures: Structure and phase diagram. Physical Review Letters. 2011;106(22):228301.Google Scholar
Camargo, M, Egorov, SA, Likos, CN. Cluster formation in star-linear polymer mixtures: Equilibrium and dynamical properties. Soft Matter. 2012;8(15):41774184.Google Scholar
Parisi, D, Truzzolillo, D, Deepak, FD, Gauthier, M, Vlassopoulos, D. Transition from confined to bulk dynamics. Macromolecules 2019;52(15):58725883.Google Scholar
Kandar, AK, Basu, JK, Narayanan, S, Sandy, A. Anomalous structural and dynamical phase transitions of soft colloidal binary mixtures. Soft Matter. 2012;8(39):1005510060.Google Scholar
Abbas, S, Lodge, TP. Depletion interactions: Effects of added homopolymer on ordered phases formed by spherical block copolymer micelles. Macromolecules. 2008;41(22):88958902.Google Scholar
Feng, L, Laderman, B, Sacanna, S, Chaikin, P. Re-entrant solidification in polymer–colloid mixtures as a consequence of competing entropic and enthalpic attractions. Nature Materials. 2015;14:6165.Google Scholar
Stiakakis, E, Vlassopoulos, D, Roovers, J. Thermal jamming in colloidal star-linear polymer mixtures. Langmuir. 2013;19(17):66456649.Google Scholar
Immink, JN, Maris, E, Crassous, JJ, Stenhammar, J, Schurtenberger, P. Reversible formation of thermoresponsive binary particle gels with tunable structural and mechanical properties. ACS Nano. 2019;13(3):32923300.Google Scholar
Bischofberger, I, Calzolari, DCE, De Los Rios, P, Jelezarov, I, Trappe, V. Hydrophobic hydration of poly-N-isopropyl acrylamide: A matter of the mean energetic state of water. Scientific Reports. 2014;4:4377.Google Scholar
Truzzolillo, D, Vlassopoulos, D, Gauthier, M, Munam, A. Thermal melting in depletion gels of hairy nanoparticles. Soft Matter. 2013;9(38):90889093.Google Scholar
Zaccarelli, E, Mayer, C, Asteriadi, A, Likos, CN, Sciortino, F, Roovers, J, et al. Tailoring the flow of soft glasses by soft additives. Physical Review Letters. 2005;95(26):268301.Google Scholar
Mayer, C, Sciortino, F, Likos, CN, Tartaglia, P, Löwen, H, Zaccarelli, E. Multiple glass transitions in star polymer mixtures: Insights from theory and simulations. Macromolecules. 2009;42(1):423434.Google Scholar
Stiakakis, E, Erwin, BM, Vlassopoulos, D, Cloitre, M, Munam, A, Gauthier, M, et al. Probing glassy states in binary mixtures of soft interpenetrable colloids. Journal of Physics: Condensed Matter. 2011;23(23):234116.Google Scholar
Di Lorenzo, F, Seiffert, S. Counter-effect of Brownian and elastic forces on the liquid-to-solid transition of microgel suspensions. Soft Matter. 2015;11(26):52355245.Google Scholar
Mayer, C, Zaccarelli, E, Stiakakis, E, Likos, CN, Sciortino, F, Munam, A, et al. Asymmetric caging in soft colloidal mixtures. Nature Materials. 2008;7(10):780784.Google Scholar
Marzi, D, Capone, B, Marakis, J, Merola, MC, Truzzolillo, D, Cipelletti, L, et al. Depletion, melting and reentrant solidification in mixtures of soft and hard colloids. Soft Matter. 2015;11(42):82968312.Google Scholar
Dzubiella, J, Jusufi, A, Likos, CN, von Ferber, C, Löwen, H, Stellbrink, J, et al. Phase separation of star-polymer-colloid mixtures. Physical Review E. 2001;64(1):010401(R).Google Scholar
Bayliss, K, van Duijneveldt, JS, Faers, MA, Vermeer, AWP. Comparing colloidal phase separation induced by linear polymer and by microgel particles. Soft Matter. 2011;7(21):1034510352.Google Scholar
Zhao, C, Yuan, G, Han, CC. Stabilization, aggregation and gelation of microgels induced by thermosensitive microgels. Macromolecules. 2012;45(23):94689474.Google Scholar
Zhao, C, Yuan, G, Han, CC. Bridging and caging in mixed suspensions of microsphere and adsorptive microgel. Soft Matter. 2014;10(44):89058917.Google Scholar
Zhao, C, Yuan, G, Jia, D, Han, CC. Macrogel induced by microgel: Bridging depletion mechanisms. Soft Matter. 2012;8(26):70367043.Google Scholar
Jia, D, Cheng, H, Han, CC. Interplay between caging and bonding in binary concentrated colloidal suspensions. Langmuir. 2018;34(9):30213029.Google Scholar
Zong, Y, Yuang, G, Han, CC. Asymmetrical phase separation and gelation in binary mixtures of oppositely charged colloids. Journal of Chemical Physics. 2016;145(1):014904.Google Scholar
Jia, D, Hollingsworth, JV, Zhou, Z, Cheng, H, Han, CC. Coupling of gelation and glass transition in a biphasic colloidal mixture-from gel-to defective gel-to glass. Soft Matter. 2015;11(45):88188826.Google Scholar
Truzzolillo, D, Marzi, D, Marakis, J, Capone, B, Camargo, M, Munam, A, et al. Glassy states in asymmetric mixtures of soft and hard colloids. Physical Review Letters. 2013;111(20):208301.Google Scholar
Merola, MC, Parisi, D, Truzzolillo, D, Vlassopoulos, D. Asymmetric soft-hard colloidal mixtures: Osmotic effects, glassy states and rheology. Journal of Rheology. 2018;62(1):6379.Google Scholar
Cloitre, M. Yielding, flow, and slip in microgel suspensions: From microstructure to macroscopic rheology. In Fernandez-Nieves, A, Wyss, HM, Mattsson, J, Weitz, DA (eds.) Microgel Suspensions: Fundamentals and Applications. Weinheim: Wiley; 2011; pp. 285310.Google Scholar
Akcora, P, Liu, H, Kumar, SK, Moll, J, Li, Y, Benicewicz, BC, et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nature Materials. 2009;8(4):354359.Google Scholar
Srivastava, S, Agarwal, A, Archer, LA. Tethered nanoparticle-polymer composites: Phase stability and curvature. Langmuir. 2012;28(15):62766281.Google Scholar
Gohr, K, Schärtl, W. Dynamics of copolymer micelles in a homopolymer melt: Influence of the matrix molecular weight. Macromolecules. 2000;33(6):21292135.Google Scholar
Lindenblatt, G, Schärtl, W, Pakula, T, Schmidt, M. Structure and dynamics of hairy spherical colloids in a matrix of nonentangled linear chains. Macromolecules. 2001;34(6):730736.Google Scholar
Green, DL, Mewis, J. Connecting the wetting and rheological behaviors of poly (dimethylsiloxane)-grafted silica spheres in poly(dimethylsiloxane) melts. Langmuir. 2006;22(23):95469553.Google Scholar
Borukhov, I, Leibler, L. Stabilizing grafted colloids in a polymer melt: Favorable enthalpic interactions. Physical Review E. 2000;62(1):R41–44.Google Scholar
Mangal, R, Nath, P, Tikekar, M, Archer, LA. Enthalpy-driven stabilization of dispersions of polymer-grafted nanoparticles in high-molecular-weight polymer melts. Langmuir. 2016;32(41):1062110631.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×