Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T02:16:49.500Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

21 - Bounds on the properties of composites

Graeme W. Milton
Affiliation:
University of Utah
Get access

Summary

Why are bounds useful?

Very efficient numerical algorithms are currently available for calculating the effective tensors of quite complicated two-dimensional microgeometries. The numerical evaluation of effective tensors for three-dimensional microgeometries is also progressing rapidly. In light of these advances one might ask: Why is there a need for developing bounds on effective tensors? One reason is that they often provide quick and simple estimates for the effective tensors.

Another reason for favoring bounds is that in most experimental situations we do not have a complete knowledge of the composite geometry. Even when an accurate determination of the three-dimensional composite microgeometry is possible, obtaining this information and numerically parameterizing it (which may involve the triangulation of boundaries between phases) can be a very time-consuming process. Cross-sectional photographs give only limited information. For example, in a two-phase microgeometry it can be difficult to judge whether a phase is connected if a cross-sectional photograph shows only islands of that phase surrounded by the second phase. In the three-dimensional microgeometry, does the first phase consist of connected wire-like filaments, or does it consist of isolated elongated inclusions? The answer could have a large influence on one's estimates for, say, the effective conductivity when both phases have widely different conductivities. The problem of reconstructing the three-dimensional microstructure from a cross-sectional photograph is the subject of active research; see Yeong and Torquato (1998) and references therein.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×