Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T16:44:59.211Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2016

Emmanuel Fricain
Affiliation:
Université de Lille 1
Javad Mashreghi
Affiliation:
Université Laval, Québec
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramovich, Y. A., and Aliprantis, C. D.An invitation to operator theory, vol. 50 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[2] Adamjan, V. M., Arov, D. Z., and Kreĭn, M. G.Infinite Hankel matrices and generalized Carathéodory–Fejér and I. Schur problems. Funkcional. Anal. Priložen. 2, 4 (1968), 1–17.Google Scholar
[3] Adamjan, V. M., Arov, D. Z., and Kreĭn, M. G.Infinite Hankel matrices and generalized problems of Carathéodory–Fejér and F. Riesz Problems. Funkcional. Anal. Priložen. 2, 1 (1968), 1–19.Google Scholar
[4] Adamjan, V. M., Arov, D. Z., and Kreĭn, M. G.Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur–Takagi problem. Mat. Sbornik (N.S.) 86, 128 (1971), 34–75.Google Scholar
[5] Adamjan, V. M., Arov, D. Z., and Kreĭn, M. G.Infinite Hankel block matrices and related problems of extension.Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6, 2–3 (1971), 87–112.Google Scholar
[6] Agler, J., and McCarthy, J. E.Pick interpolation and Hilbert function spaces, vol. 44 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[7] Ahern, P. R., and Clark, D. N.On functions orthogonal to invariant subspaces. Acta Math. 124 (1970), 191–204.Google Scholar
[8] Ahern, P. R., and Clark, D. N.On star-invariant subspaces. Bull. Amer. Math. Soc. 76 (1970), 629–632.Google Scholar
[9] Ahern, P. R., and Clark, D. N.Radial limits and invariant subspaces.Amer. J. Math. 92 (1970), 332–342.Google Scholar
[10] Akhiezer, N. I.The classical moment problem and some related questions in analysis. Translated by N., Kemmer. Hafner, New York, 1965.
[11] Akhiezer, N. I., and Glazman, I. M.Theory of linear operators in Hilbert space. Translated from Russian and with preface by M., Nestell; reprint of 1961 and 1963 translations. Dover, New York, 1993.
[12] Albiac, F., and Kalton, N. J.Topics in Banach space theory, vol. 233 of Graduate Texts in Mathematics. Springer, New York, 2006.
[13] Aleksandrov, A. B.Invariant subspaces of the backward shift operator in the space Hp (p ⋴ (0, 1)). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92, Issled. Linein. Oper. Teorii Funktsii. 9 (1979), 7–29, 318.Google Scholar
[14] Aleksandrov, A. B.Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22, 5 (1987), 490–503, 515.Google Scholar
[15] Aleksandrov, A. B.Inner functions and related spaces of pseudocontinuable functions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170, Issled. Linein. Oper. Teorii Funktsii. 17 (1989), 7–33, 321.Google Scholar
[16] Aleksandrov, A. B.On the existence of angular boundary values of pseudocontinuable functions.Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222, Issled. Linein. Oper. Teorii Funktsii. 23 (1995), 5–17, 307.Google Scholar
[17] Aleksandrov, A. B.Isometric embeddings of co-invariant subspaces of the shift operator.Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232, Issled. Linein. Oper. Teorii Funktsii. 24 (1996), 5–15, 213.Google Scholar
[18] Aleman, A., Richter, S., and Ross, W. T.Pseudocontinuations and the backward shift.Indiana Univ. Math. J. 47, 1 (1998), 223–276.Google Scholar
[19] Alpay, D.Algorithme de Schur, espaces à noyau reproduisant et théorie des systèmes, vol. 6 of Panoramas et Synthèses. Société Mathématique de France, Paris, 1998.
[20] Alpay, D. (Ed.) Reproducing kernel spaces and applications, vol. 143 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2003.
[21] Alpay, D., Attia, H., and Volok, D.Realization theorems for stationary multiscale systems.Linear Algebra Appl. 412 (2–3) (2006), 326–347.Google Scholar
[22] Alpay, D., Ball, J. A., and Peretz, Y.System theory, operator models and scattering: the time-varying case. J. Operator Theory 47, 2 (2002), 245–286.Google Scholar
[23] Alpay, D., Bolotnikov, V., Dijksma, A., Rovnyak, J., and Sadosky, C.Espaces de Hilbert inclus contractivement dans l'espace de Hardy du bi-disque. C. R. Acad. Sci. Paris, Sér. I Math. 326, 12 (1998), 1365–1370.Google Scholar
[24] Alpay, D., Bolotnikov, V., Dijksma, A., and Sadosky, C.Hilbert spaces contractively included in the Hardy space of the bidisk.Positivity 5, 1 (2001), 25–50.Google Scholar
[25] Alpay, D., Constantinescu, T., Dijksma, A., and Rovnyak, J.Notes on interpolation in the generalized Schur class. II. Nudelman's problem. Trans. Amer. Math. Soc. 355, 2 (2003), 813–836 (electronic).Google Scholar
[26] Alpay, D., Dijksma, A., and Langer, H.The Schur transformation for Nevanlinna functions: operator representations, resolvent matrices, and orthogonal polynomials. In vol. 1 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2008, pp. 1–37.
[27] Alpay, D., Dijksma, A., and Peretz, Y.Nonstationary analogs of the Herglotz representation theorem: the discrete case.J. Funct. Anal. 166, 1 (1999), 85–129.Google Scholar
[28] Alpay, D., Dijksma, A., Rovnyak, J., and de Snoo, H.Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, vol. 96 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1997.
[29] Alpay, D., Dijksma, A., Rovnyak, J., and de Snoo, H. S. V.Reproducing kernel Pontryagin spaces. In Holomorphic spaces (Berkeley, CA, 1995), vol. 33 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, UK, 1998, pp. 425–444.
[30] Alpay, D., and Dubi, C.Boundary interpolation in the ball.Linear Algebra Appl. 340 (2002), 33–54.Google Scholar
[31] Alpay, D., and Dubi, C.Backward shift operator and finite dimensional de Branges–Rovnyak spaces in the ball. Linear Algebra Appl. 371 (2003), 277–285.Google Scholar
[32] Alpay, D., and Dubi, C.Carathéodory–Fejér interpolation in the ball. Linear Algebra Appl. 359 (2003), 1–19.Google Scholar
[33] Alpay, D., and Dym, H.Hilbert spaces of analytic functions, inverse scattering and operator models. I.Integral Equations Operator Theory 7, 5 (1984), 589–641.Google Scholar
[34] Alpay, D., and Dym, H.Hilbert spaces of analytic functions, inverse scattering and operator models. II.Integral Equations Operator Theory 8, 2 (1985), 145–180.Google Scholar
[35] Alpay, D., and Dym, H.On a new class of structured reproducing kernel spaces. J. Funct. Anal. 111, 1 (1993), 1–28.Google Scholar
[36] Alpay, D., and Kaptanoğlu, H. T.Some finite-dimensional backward-shiftinvariant subspaces in the ball and a related interpolation problem.Integral Equations Operator Theory 42, 1 (2002), 1–21.Google Scholar
[37] Alpay, D., and Peretz, Y.Realizations for Schur upper triangular operators centered at an arbitrary point. Integral Equations Operator Theory 37, 3 (2000), 251–323.Google Scholar
[38] Alpay, D., Reich, S., and Shoikhet, D. Rigidity, boundary interpolation and reproducing kernels. arXiv:0709.2504v1, 2007.
[39] Alpay, D., Shapiro, M., and Volok, D.Espaces de Branges–Rovnyak et fonctions de Schur: le cas hyper-analytique. C. R. Math. Acad. Sci. Paris 338, 6 (2004), 437–442.Google Scholar
[40] Alpay, D., Timoshenko, O., and Volok, D.Carathéodory functions in the Banach space setting. Linear Algebra Appl. 425, 2–3 (2007), 700–713.Google Scholar
[41] Amar, E., and Lederer, A.Points exposés de la boule unité de H∞ (D). C.R. Acad. Sci. Paris, Sér. A, 272 (1971), 1449–1452.Google Scholar
[42] Amar, E., and Matheron, E.Analyse complexe. In Enseignement des mathématiques. Cassini, 2003.
[43] Anderson, J. M., Dritschel, M. A., and Rovnyak, J.Schwarz–Pick inequalities for the Schur–Agler class on the polydisk and unit ball. Comput. Methods Funct. Theory 8, 1–2 (2008), 339–361.Google Scholar
[44] Anderson, J. M., and Rovnyak, J.On generalized Schwarz–Pick estimates. Mathematika 53, 1 (2006), 161–168 (2007).Google Scholar
[45] Aronszajn, N.Theory of reproducing kernels.Trans. Amer. Math. Soc. 68 (1950), 337–404.Google Scholar
[46] Arov, D. Z., and Dym, H.J-inner matrix functions, interpolation and inverse problems for canonical systems. I. Foundations. Integral Equations Operator Theory 29, 4 (1997), 373–454.Google Scholar
[47] Arsove, M. G.Similar bases and isomorphisms in Fréchet spaces. Math. Ann. 135 (1958), 283–293.Google Scholar
[48] Arsove, M. G.The Paley–Wiener theorem in metric linear spaces.Pacific J. Math. 10 (1960), 365–379.Google Scholar
[49] Arsove, M. G., and Edwards, R. E.Generalized bases in topological linear spaces. Studia Math. 19 (1960), 95–113.Google Scholar
[50] Atkinson, F. V.The normal solubility of linear equations in normed spaces.Mat. Sbornik (N.S.) 28, 70 (1951), 3–14.Google Scholar
[51] Avdonin, S. A., and Ivanov, S. A.Families of exponentials: the method of moments in controllability problems for distributed parameter systems. Translated from Russian and revised by authors. Cambridge University Press, Cambridge, UK, 1995.
[52] Axler, S., Berg, I. D., Jewell, N., and Shields, A.Approximation by compact operators and the space H∞ + C. Ann. of Math. (2) 109, 3 (1979), 601–612.Google Scholar
[53] Axler, S., Bourdon, P., and Ramey, W.Harmonic function theory, 2nd edn, vol. 137 of Graduate Texts in Mathematics. Springer, New York, 2001.
[54] Axler, S., Chang, S.-Y. A., and Sarason, D.Products of Toeplitz operators. Integral Equations Operator Theory 1, 3 (1978), 285–309.Google Scholar
[55] Bachman, G., and Narici, L.Functional analysis. Reprint of 1966 original. Dover, Mineola, NY, 2000.
[56] Baire, R.Sur les fonctions de variables réelles. Ann. Mat. Ser. 3, 3 (1899), 1–123.Google Scholar
[57] Ball, J. A.Models for noncontractions. J. Math. Anal. Appl. 52, 2 (1975), 235–254.Google Scholar
[58] Ball, J. A., Bolotnikov, V., and Fang, Q. Multivariable backward-shiftinvariant subspaces and observability operators. arXiv:0610634v1, 2006.
[59] Ball, J. A., Bolotnikov, V., and Fang, Q. Schur-class multipliers on the Fock space: De Branges–Rovnyak reproducing kernel spaces and transfer-function realizations. arXiv:0610635v1, 2006.
[60] Ball, J. A., Bolotnikov, V., and Fang, Q.Transfer-function realization for multipliers of the Arveson space. J. Math. Anal. Appl. 333, 1 (2007), 68–92.Google Scholar
[61] Ball, J. A., Bolotnikov, V., and Fang, Q.Schur-class multipliers on the Arveson space: De Branges–Rovnyak reproducing kernel spaces and commutative transfer-function realizations. J. Math. Anal. Appl. 341 (2008), 519–539.Google Scholar
[62] Ball, J. A., and Kriete, III, T. L.Operator-valued Nevanlinna–Pick kernels and the functional models for contraction operators. Integral Equations Operator Theory 10, 1 (1987), 17–61.Google Scholar
[63] Ball, J. A., and Lubin, A.On a class of contractive perturbations of restricted shifts. Pacific J. Math. 63, 2 (1976), 309–323.Google Scholar
[64] Ball, J. A., Sadosky, C., and Vinnikov, V.Scattering systems with several evolutions and multidimensional input/state/output systems.Integral Equations Operator Theory 52, 3 (2005), 323–393.Google Scholar
[65] Ball, J. A., Trent, T. T., and Vinnikov, V.Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces. In Operator theory and analysis (Amsterdam, 1997), vol. 122 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2001, pp. 89–138.
[66] Banach, S.Sur les fonctionelles linéaires I, II.Studia Math. 1 (1929), 211–216, 223–239.Google Scholar
[67] Banach, S.Théorie des opérations linéaires. Reprint of the 1932 original. Éditions Jacques, Gabay, Sceaux, 1993.
[68] Banach, S., and Steinhaus, H.Sur le principe de la condensation de singularit és. Fund. Math. 9 (1927), 50–61.Google Scholar
[69] Baranov, A.Stability of bases and frames of reproducing kernels in model spaces. Ann. Inst. Fourier (Grenoble) 55, 7 (2005), 2399–2422.Google Scholar
[70] Baranov, A. D.Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings. J. Funct. Anal. 223, 1 (2005), 116–146.Google Scholar
[71] Baranov, A.Completeness and Riesz bases of reproducing kernels in model subspaces. Int. Math. Res. Not. 2006 (2006), 81530.Google Scholar
[72] Baranov, A. D.Embeddings of model subspaces of the Hardy class: compactness and Schatten–von Neumann ideals. Izv. Ross. Akad. Nauk Ser. Mat. 73, 6 (2009), 3–28.Google Scholar
[73] Baranov, A., and Belov, Y.Systems of reproducing kernels and their biorthogonal: completeness or incompleteness?Int. Math. Res. Not. 22 (2011), 5076–5108.Google Scholar
[74] Baranov, A., Belov, Y., and Borichev, A.A restricted shift completeness problem. J. Funct. Anal. 263, 7 (2012), 1887–1893.Google Scholar
[75] Baranov, A., Bessonov, R., and Kapustin, V.Symbols of truncated Toeplitz operators. J. Funct. Anal. 261, 12 (2011), 3437–3456.Google Scholar
[76] Baranov, A., Chalendar, I., Fricain, E., Mashreghi, J., and Timotin, D.Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators. J. Funct. Anal. 259, 10 (2010), 2673–2701.Google Scholar
[77] Baranov, A., and Dyakonov, K.The Feichtinger conjecture for reproducing kernels in model subspaces. J. Geom. Anal. 21, 2 (2011), 276–287.Google Scholar
[78] Baranov, A. D., and Fedorovskiĭ, K. Y.Boundary regularity of Nevanlinna domains and univalent functions in model subspaces. Mat. Sbornik 202, 12 (2011), 3–22.Google Scholar
[79] Baranov, A., Fricain, E., and Mashreghi, J.Weighted norm inequalities for de Branges–Rovnyak spaces and their applications. Amer. J. Math. 132, 1 (2010), 125–155.Google Scholar
[80] Baranov, A. D., and Havin, V. P.Admissible majorants for model subspaces and arguments of inner functions. Funktsional. Anal. Prilozhen. 40, 4 (2006), 3–21, 111.Google Scholar
[81] Bari, N. K.Sur les bases dans l'espace de Hilbert. Dokl. Akad. Nauk. SSSR 54 (1946), 379–382.Google Scholar
[82] Bari, N. K.Biorthogonal systems and bases in Hilbert space. Moskov. Gos. Univ. Učenye Zap. Mat. 148, 4 (1951), 69–107.Google Scholar
[83] Beauzamy, B.Introduction to Banach spaces and their geometry, 2nd edn, vol. 68 of North-Holland Mathematics Studies, Notas de Matemática. North-Holland, Amsterdam, 1985.
[84] Beauzamy, B.Un opérateur sans sous-espace invariant: simplification de l'exemple de P. Enflo. Integral Equations Operator Theory 8, 3 (1985), 314– 384.Google Scholar
[85] Belov, Y. S.Criteria for the admissibility of majorants for model subspaces with a rapidly increasing argument of the generating inner function. Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 345, Issled. Linein. Oper. Teor. Funkts. 34 (2007), 55–84, 141.Google Scholar
[86] Belov, Y. S.Model functions with an almost prescribed modulus. Algebra Analiz 20, 2 (2008), 3–18.Google Scholar
[87] Belov, Y. S.Necessary conditions for the admissibility of majorants for some model subspace. Algebra Analiz 20, 4 (2008), 1–26.Google Scholar
[88] Beneker, P.Strongly exposed points, Helson–Szegőweights and Toeplitz operators. Integral Equations Operator Theory 31, 3 (1998), 299–306.Google Scholar
[89] Beneker, P., and Wiegerinck, J.Strongly exposed points in uniform algebras. Proc. Amer. Math. Soc. 127, 5 (1999), 1567–1570.Google Scholar
[90] Bercovici, H.Operator theory and arithmetic in H∞, vol. 26 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988.
[91] Berenstein, C. A., and Gay, R.Complex variables: an introduction, vol. 125 of Graduate Texts in Mathematics. Springer, New York, 1991.
[92] Bergman, S.The kernel function and conformal mapping, 2nd (rev.) edn, Mathematical Surveys and Monographs, No. 5. American Mathematical Society, Providence, RI, 1970.
[93] Bergman, S.Ü ber die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen. Math. Ann. 86, 3–4 (1922), 238–271.Google Scholar
[94] Bessaga, C., and Pełczy ński, A.On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151–164.Google Scholar
[95] Bessaga, C., and Pełczy ński, A.Properties of bases in spaces of type B0. Prace Mat. 3 (1959), 123–142.Google Scholar
[96] Beurling, A.Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle. Neuvième Congrès Math. Scand. Helsinki (1938), 345–366.Google Scholar
[97] Beurling, A.On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1948), 17.Google Scholar
[98] Bini, D., and Pan, V. Y.Polynomial and matrix computations. Vol. 1. Fundamental algorithms. In Progress in Theoretical Computer Science. Birkhäuser, Boston, MA, 1994.
[99] Birkhoff, G.Lattice theory. American Mathematical Society, New York, 1940.
[100] Blaschke, W.Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen. Math.-Phys. Kl., Sächs. Gesell. Wiss. Leipzig 67 (1915), 194–200.Google Scholar
[101] Bloomfield, P., Jewell, N., and Hayashi, E.Characterizations of completely nondeterministic processes. Pacific J. Math. 107 (1983), 307–317.Google Scholar
[102] Boas, Jr., R. P.Expansions of analytic functions. Trans. Amer. Math. Soc. 48 (1940), 467–487.Google Scholar
[103] Boas, Jr., R. P.A general moment problem. Amer. J. Math. 63 (1941), 361–370.Google Scholar
[104] Bochner, S.Über orthogonale Systeme analytischer Funktionen. Math. Z. 14, 1 (1922), 180–207.Google Scholar
[105] Bočkarev, S. V.Existence of a basis in the space of functions analytic in the disc, and some properties of Franklin's system. Mat. Sbornik (N.S.) 95, 137 (1974), 3–18, 159.Google Scholar
[106] Bolotnikov, V.A boundary Nevanlinna–Pick problem for a class of analytic matrix-valued functions in the unit ball. Linear Algebra Appl. 346 (2002), 239– 260.Google Scholar
[107] Bolotnikov, V.Interpolation for multipliers on reproducing kernel Hilbert spaces. Proc. Amer. Math. Soc. 131, 5 (2003), 1373–1383 (electronic).Google Scholar
[108] Bolotnikov, V., and Kheifets, A.Boundary Nevanlinna–Pick interpolation problems for generalized Schur functions. In Interpolation, Schur functions and moment problems, vol. 165 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2006, pp. 67–119.
[109] Bolotnikov, V., and Kheifets, A.A higher order analogue of the Carathéodory–Julia theorem. J. Funct. Anal. 237, 1 (2006), 350–371.Google Scholar
[110] Bolotnikov, V. and Kheifets, A. The higher order Carathéodory–Julia theorem and related boundary interpolation problems. arXiv:0701106v1, 2007.
[111] Bonsall, F. F., and Gillespie, T. A.Hankel operators with PC symbols and the space H∞ + PC. Proc. R. Soc. Edinburgh Sect. A 89, 1–2 (1981), 17–24.Google Scholar
[112] Böttcher, A., Dijksma, A., Langer, H., Dritschel, M. A., Rovnyak, J., and Kaashoek, M. A.Lectures on operator theory and its applications, vol. 3 of Fields Institute Monographs. Edited by P., Lancaster. American Mathematical Society, Providence, RI, 1996.
[113] Böttcher, A., and Silbermann, B.Analysis of Toeplitz operators, 2nd edn. Prepared jointly with A., Karlovich. In Springer Monographs in Mathematics. Springer, Berlin, 2006.
[114] Bourgain, J.Strongly exposed points in weakly compact convex sets in Banach spaces. Proc. Amer. Math. Soc. 58 (1976), 197–200.Google Scholar
[115] Bray, H.Elementary properties of the Stieltjes integral. Ann. of Math.(2) 20, 3 (1919), 177–186.Google Scholar
[116] Brennan, J. E.Invariant subspaces and subnormal operators. In Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math. XXXV, Williams Coll., Williamstown, MA, 1978), Part 1. American Mathematical Society, Providence, RI, 1979, pp. 303–309.
[117] Brennan, J. E.Point evaluations, invariant subspaces and approximation in the mean by polynomials. J. Funct. Anal. 34, 3 (1979), 407–420.Google Scholar
[118] Brezis, H.Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York, 2011.
[119] Brown, A., and Halmos, P. R.Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213 (1963/1964), 89–102.Google Scholar
[120] Bultheel, A., and Van Barel, M.Linear algebra, rational approximation and orthogonal polynomials, vol. 6 of Studies in Computational Mathematics. North-Holland, Amsterdam, 1997.
[121] Calderón, A., Spitzer, F., and Widom, H.Inversion of Toeplitz matrices. Illinois J. Math. 3 (1959), 490–498.Google Scholar
[122] Caratheódory, C.Über den Variabilitätsbereich der Koeffizienten von Potenzreflien, die gegebene Werte nicht annehmen. Math. Ann. 64 (1907), 95–115.Google Scholar
[123] Caratheódory, C.Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32 (1911), 193–217.Google Scholar
[124] Caratheódory, C., and Fejér, L.Über den Zusammenhang der extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard– Landau'schen Satz. Rend. Circ. Mat. Palermo 32 (1911), 218–239.Google Scholar
[125] Carleson, L.An interpolation problem for bounded analytic functions. Amer. J. Math. 80 (1958), 921–930.Google Scholar
[126] Carleson, L.Interpolations by bounded analytic functions and the corona problem. Ann. of Math. (2) 76 (1962), 547–559.Google Scholar
[127] Casazza, P. G., Christensen, O., Lindner, A. M., and Vershynin, R.Frames and the Feichtinger conjecture. Proc. Amer. Math. Soc. 133, 4 (2005), 1025–1033 (electronic).Google Scholar
[128] Casazza, P. G., and Tremain, J. C.The Kadison–Singer problem in mathematics and engineering. Proc. Natl. Acad. Sci. USA 103, 7 (2006), 2032–2039 (electronic).Google Scholar
[129] Cauer, W.The Poisson integral for functions with positive real part. Bull. Amer. Math. Soc. 38, 10 (1932), 713–717.Google Scholar
[130] Chalendar, I., and Esterle, J.Le problème du sous-espace invariant. In Development of mathematics 1950–2000. Birkhäuser, Basel, 2000, pp. 235–267.
[131] Chalendar, I., Fricain, E., and Partington, J. R.Overcompleteness of sequences of reproducing kernels in model spaces. Integral Equations Operator Theory 56, 1 (2006), 45–56.Google Scholar
[132] Chalendar, I., Fricain, E., and Timotin, D. A short note on the Feichtinger conjecture. arXiv:1106.3408, 2011.
[133] Chalendar, I., Fricain, E., and Timotin, D.Functional models and asymptotically orthonormal sequences. Ann. Inst. Fourier (Grenoble) 53, 5 (2003), 1527–1549.Google Scholar
[134] Chalendar, I., and Partington, J. R.Modern approaches to the invariantsubspace problem, vol. 188 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, UK, 2011.
[135] Chevrot, N., Fricain, E., and Timotin, D.On certain Riesz families in vector-valued de Branges–Rovnyak spaces. J. Math. Anal. Appl. 355, 1 (2009), 110–125.Google Scholar
[136] Choimet, D., and Queffélec, H.Analyse mathématique – Grands théorèmes du vingtième siècle. Éditeur Calvage et Mounet, 2009.
[137] Christensen, O.Frames and bases: An introductory course. In Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA, 2008.
[138] Cima, J. A., Garcia, S. R., Ross, W. T., and Wogen, W. R.Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity. Indiana Univ. Math. J. 59, 2 (2010), 595–620.Google Scholar
[139] Cima, J. A., and Matheson, A. L.Essential norms of composition operators and Aleksandrov measures. Pacific J. Math. 179, 1 (1997), 59–64.Google Scholar
[140] Cima, J. A., and Matheson, A. L.On Carleson embeddings of star-invariant supspaces. Quaest. Math. 26, 3 (2003), 279–288.Google Scholar
[141] Cima, J. A., Matheson, A. L., and Ross, W. T.The Cauchy transform, vol. 125 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006.
[142] Cima, J. A., and Ross, W. T.The backward shift on the Hardy space, vol. 79 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000.
[143] Cima, J. A., Ross, W. T., and Wogen, W. R.Truncated Toeplitz operators on finite dimensional spaces. Oper. Matrices 2, 3 (2008), 357–369.Google Scholar
[144] Clark, D. N.One dimensional perturbations of restricted shifts. J. Analyse Math. 25 (1972), 169–191.Google Scholar
[145] Coburn, L. A.Weyl's theorem for nonnormal operators. Michigan Math. J. 13 (1966), 285–288.Google Scholar
[146] Coburn, L. A.The C *-algebra generated by an isometry. I. Bull. Amer. Math. Soc. 73 (1967), 722–726.Google Scholar
[147] Coburn, L. A.The C *-algebra generated by an isometry. II. Trans. Amer. Math. Soc. 137 (1969), 211–217.Google Scholar
[148] Coburn, L. A., and Douglas, R. G.Translation operators on the half-line. Proc. Natl. Acad. Sci. USA 62 (1969), 1010–1013.Google Scholar
[149] Cohen, P. J.A note on constructive methods in Banach algebras. Proc. Amer. Math. Soc. 12 (1961), 159–163.Google Scholar
[150] Cohn, B.Carleson measures for functions orthogonal to invariant subspaces. Pacific J. Math. 103, 2 (1982), 347–364.Google Scholar
[151] Cohn, W. S.Orthogonal complements to invariant subspaces. Indiana Univ. Math. J. 29, 5 (1980), 683–692.Google Scholar
[152] Cohn, W. S.Unitary equivalence of restricted shifts. J. Operator Theory 5, 1 (1981), 17–28.Google Scholar
[153] Cohn, W. S.On the Hp classes of derivatives of functions orthogonal to invariant subspaces. Michigan Math. J. 30, 2 (1983), 221–229.Google Scholar
[154] Cohn, W. S.Carleson measures and operators on star-invariant subspaces. J. Operator Theory 15, 1 (1986), 181–202.Google Scholar
[155] Cohn, W. S.Radial limits and star invariant subspaces of bounded mean oscillation. Amer. J. Math. 108, 3 (1986), 719–749.Google Scholar
[156] Cohn, W. S.On fractional derivatives and star invariant subspaces. Michigan Math. J. 34, 3 (1987), 391–406.Google Scholar
[157] Cohn, W. S.A maximum principle for star invariant subspaces. Houston J. Math. 14, 1 (1988), 23–37.Google Scholar
[158] Coifman, R. R., Rochberg, R., and Weiss, G.Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103, 3 (1976), 611–635.Google Scholar
[159] Conway, J. B.A course in functional analysis, 2nd edn, vol. 96 of Graduate Texts in Mathematics. Springer, New York, 1990.
[160] Conway, J. B.The theory of subnormal operators, vol. 36 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1991.
[161] Corach, G., Maestripieri, A., and Stojanoff, D.Projections in operator ranges. Proc. Amer. Math. Soc. 134, 3 (2006), 765–778 (electronic).Google Scholar
[162] Cowen, C. C.The commutant of an analytic Toeplitz operator. Trans. Amer. Math. Soc. 239 (1978), 1–31.Google Scholar
[163] Crofoot, R. B.Multipliers between invariant subspaces of the backward shift. Pacific J. Math. 166, 2 (1994), 225–246.Google Scholar
[164] Davies, E. B.Linear operators and their spectra, vol. 106 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, UK, 2007.
[165] Davis, B. M., and McCarthy, J. E.Multipliers of de Branges spaces. Michigan Math. J. 38, 2 (1991), 225–240.Google Scholar
[166] de Branges, L.A construction of Kreĭn spaces of analytic functions. J. Funct. Anal. 98, 1 (1991), 1–41.Google Scholar
[167] de Branges, L., and Rovnyak, J.Canonical models in quantum scattering theory. In Perturbation theory and its applications in quantum mechanics (Proc. Adv. Sem. Math. Res. Center, US Army, Theor. Chem. Inst., Univ. Wisconsin, Madison, WI, 1965).Wiley, New York, 1966, pp. 295–392.
[168] de Branges, L., and Rovnyak, J.Square summable power series.Holt, Rinehart and Winston, New York, 1966.
[169] de Leeuw, K., and Rudin, W.Extreme points and extremum problems in H1. Pacific J. Math. 8 (1958), 467–485.Google Scholar
[170] Devinatz, A.Toeplitz operators on H2 spaces. Trans. Amer. Math. Soc. 112 (1964), 304–317.Google Scholar
[171] Dieudonné, J.Sur les homomorphismes d'espaces normés. Bull. Sci. Math. (2) 67 (1943), 72–84.Google Scholar
[172] Dieudonné, J. A.The index of operators in Banach spaces. Integral Equations Operator Theory 8, 5 (1985), 580–589.Google Scholar
[173] Douglas, R. G.On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415.Google Scholar
[174] Douglas, R. G.Toeplitz and Wiener–Hopf operators in H∞ + C. Bull. Amer. Math. Soc. 74 (1968), 895–899.Google Scholar
[175] Douglas, R. G.On the spectrum of a class of Toeplitz operators. J. Math. Mech. 18 (1968/1969), 433–435.Google Scholar
[176] Douglas, R. G.Banach algebra techniques in the theory of Toeplitz operators. In Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No. 15.American Mathematical Society, Providence, RI, 1973.
[177] Douglas, R. G.Banach algebra techniques in operator theory, 2nd edn, vol. 179 of Graduate Texts in Mathematics. Springer, New York, 1998.
[178] Douglas, R. G., and Sarason, D.Fredholm Toeplitz operators. Proc. Amer. Math. Soc. 26 (1970), 117–120.Google Scholar
[179] Douglas, R. G., and Sarason, D.A class of Toeplitz operators. In Proceedings of an International Symposium on Operator Theory (Indiana Univ., Bloomington, IN, 1970) (1971), vol. 20, pp. 891–895.
[180] Douglas, R. G., Shapiro, H. S., and Shields, A. L.Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble) 20, 1 (1970), 37–76.Google Scholar
[181] Dritschel, M. A., and Rovnyak, J.Extension theorems for contraction operators on Krein spaces. In Extension and interpolation of linear operators and matrix functions, vol. 47 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1990, pp. 221–305.
[182] Dritschel, M. A., and Rovnyak, J.Julia operators and complementation in Kreĭn spaces. Indiana Univ. Math. J. 40, 3 (1991), 885–901.Google Scholar
[183] Duffin, R. J., and Eachus, J. J.Some notes on an expansion theorem of Paley and Wiener. Bull. Amer. Math. Soc. 48 (1942), 850–855.Google Scholar
[184] Dunford, N.A mean ergodic theorem. DukeMath. J. 5 (1939), 635–646.Google Scholar
[185] Dunford, N., and Pettis, B. J.Linear operations on summable functions. Trans. Amer. Math. Soc. 47 (1940), 323–392.Google Scholar
[186] Dunford, N., and Schwartz, J. T.Linear operators. Part I. General theory. With the assistance of W. G., Bade and R. G., Bartle. Reprint of the 1958 original. Wiley, New York, 1988.
[187] Dunford, N., and Schwartz, J. T.Linear operators. Part II. Spectral theory. With the assistance of W. G., Bade and R. G., Bartle. Reprint of the 1963 original. Wiley, New York, 1988.
[188] Duren, P. L.Theory of Hp spaces, vol. 38 of Pure and Applied Mathematics.Academic Press, New York, 1970.
[189] Duren, P. L., Romberg, B. W., and Shields, A. L.Linear functionals on Hp spaces with 0 < p < 1. J. Reine Angew. Math. 238 (1969), 32–60.Google Scholar
[190] Dyakonov, K. M.The geometry of the unit ball in the space. In Geometric problems of the theory of functions and sets.Kalinin. Gos. Univ., Kalinin, 1987, pp. 52–54 (in Russian).
[191] Dyakonov, K. M.An interpolation problem and equivalent norms in the spaces. Vestnik Leningrad. Univ. Mat. Mekh. Astron. 4 (1988), 104–105, 115.Google Scholar
[192] Dyakonov, K. M.Moduli and arguments of analytic functions from subspaces in Hp that are invariant under the backward shift operator. Sibirsk. Mat. Zh. 31, 6 (1990), 64–79.Google Scholar
[193] Dyakonov, K. M.Entire functions of exponential type and model subspaces in Hp. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 190, Issled. Linein. Oper. Teor. Funktsii. 19 (1991), 81–100, 186.Google Scholar
[194] Dyakonov, K. M.Interpolating functions of minimal norm, star-invariant subspaces and kernels of Toeplitz operators. Proc. Amer. Math. Soc. 116, 4 (1992), 1007–1013.Google Scholar
[195] Dyakonov, K. M.Kernels of Toeplitz operators, smooth functions and Bernstein-type inequalities. Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 201, Issled. Linein. Oper. Teor. Funktsii. 20 (1992), 5–21, 190.Google Scholar
[196] Dyakonov, K. M.Smooth functions and co-invariant subspaces of the shift operator. Algebra Analiz 4, 5 (1992), 117–147.Google Scholar
[197] Dyakonov, K. M.Division and multiplication by inner functions and embedding theorems for star-invariant subspaces. Amer. J. Math. 115, 4 (1993), 881–902.Google Scholar
[198] Dyakonov, K. M.Generalized Hardy inequalities and pseudocontinuable functions. Ark. Mat. 34, 2 (1996), 231–244.Google Scholar
[199] Dyakonov, K. M.Embedding theorems for star-invariant subspaces generated by smooth inner functions. J. Funct. Anal. 157, 2 (1998), 588–598.Google Scholar
[200] Dyakonov, K. M.Kernels of Toeplitz operators via Bourgain's factorization theorem. J. Funct. Anal. 170, 1 (2000), 93–106.Google Scholar
[201] Dyakonov, K. M.Differentiation in star-invariant subspaces. I. Boundedness and compactness. J. Funct. Anal. 192, 2 (2002), 364–386.Google Scholar
[202] Dyakonov, K. M.Differentiation in star-invariant subspaces. II. Schatten class criteria. J. Funct. Anal. 192, 2 (2002), 387–409.Google Scholar
[203] Dyakonov, K. M.Zero sets and multiplier theorems for star-invariant subspaces. J. Anal. Math. 86 (2002), 247–269.Google Scholar
[204] Džrbašjan, M. M.Biorthogonal systems, and the solution of an interpolation problem with nodes of bounded multiplicity in the class H2. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 9, 5 (1974), 339–373, 428.Google Scholar
[205] Eberlein, W. F.Weak compactness in Banach spaces. I. Proc. Natl. Acad. Sci. USA 33 (1947), 51–53.Google Scholar
[206] Enflo, P.A counterexample to the approximation problem in Banach spaces. Acta Math. 130 (1973), 309–317.Google Scholar
[207] Enflo, P.On the invariant subspace problem for Banach spaces. Acta Math. 158, 3–4 (1987), 213–313.Google Scholar
[208] Evans, L. C., and Gariepy, R. F.Measure theory and fine properties of functions. In Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[209] Fabian, M., Habala, P., Häjek, P., Montesinos, V., and Zizler, V.Banach space theory: The basis for linear and nonlinear analysis. In CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.Springer, New York, 2011.
[210] Fatou, P.Séries trigonométriques et séries de Taylor. Acta Math. 30, 1 (1906), 335–400.Google Scholar
[211] Fejér, L.Untersuchungen über Fouriersche Reihen. Math. Ann. 58 (1904), 501–569.Google Scholar
[212] Fejér, L.Über trigonometrische Polynome. J. Reine Angew. Math. 146 (1916), 53–82.Google Scholar
[213] Fejér, L., and Riesz, F.Über einige funktionentheoretische Ungleichungen.Math. Z. 11, 3–4 (1921), 305–314.Google Scholar
[214] Ferguson, S. H.Backward shift invariant operator ranges. J. Funct. Anal. 150, 2 (1997), 526–543.Google Scholar
[215] Fillmore, P. A., and Williams, J. P.On operator ranges. Adv. Math. 7 (1971), 254–281.Google Scholar
[216] Fischer, E.Über das Carathéodory'sche Problem, Potenzreihen mit positiven reellen Teil betreffend. Rend. Circ. Mat. Palermo 32 (1911), 240–256.Google Scholar
[217] Fisher, S.Exposed points in spaces of bounded analytic functions. Duke Math. J. 36 (1969), 479–484.Google Scholar
[218] Foiaş, C.Sur certains théorèmes de J. von Neumann concernant les ensembles spectraux. Acta Sci. Math. Szeged 18 (1957), 15–20.Google Scholar
[219] Fonf, V. P., Lindenstrauss, J., and Phelps, R. R.Infinite dimensional convexity. In Handbook of the geometry of Banach spaces, Vol. I.North- Holland, Amsterdam, 2001, pp. 599–670.
[220] Francis, B. A.A course in H∞ control theory, vol. 88 of Lecture Notes in Control and Information Sciences.Springer, Berlin, 1987.
[221] Fricain, E.Bases of reproducing kernels in model spaces. J. Operator Theory 46, 3, suppl. (2001), 517–543.
[222] Fricain, E.Complétude des noyaux reproduisants dans les espaces modèles. Ann. Inst. Fourier (Grenoble) 52, 2 (2002), 661–686.Google Scholar
[223] Fricain, E.Bases of reproducing kernels in de Branges spaces. J. Funct. Anal. 226, 2 (2005), 373–405.Google Scholar
[224] Frostman, O.Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel. Lunds Univ. Mat. Sem. 3 (1935), 1–118.Google Scholar
[225] Fuhrmann, P. A.On the corona theorem and its application to spectral problems in Hilbert space. Trans. Amer. Math. Soc. 132 (1968), 55–66.Google Scholar
[226] Fuhrmann, P. A.Exact controllability and observability and realization theory in Hilbert space. J. Math. Anal. Appl. 53, 2 (1976), 377–392.Google Scholar
[227] Fuhrmann, P. A.Linear systems and operators in Hilbert space. McGraw-Hill, New York, 1981.
[228] Fuhrmann, P. A.A polynomial approach to linear algebra. Universitext, Springer, New York, 1996.
[229] Gamelin, T. W.Wolff's proof of the corona theorem. Israel J. Math. 37, 1–2 (1980), 113–119.Google Scholar
[230] Gamelin, T. W.Uniform algebras. In Cambridge Mathematical Library.American Mathematical Society, Cambridge, MA, 2005.
[231] Garcia, S. R., Poore, D. E., and Ross, W. T.Unitary equivalence to a truncated Toeplitz operator: analytic symbols. Proc. Amer. Math. Soc. 140, 4 (2012), 1281–1295.Google Scholar
[232] Garcia, S. R., Ross, W. T., and Wogen, W. R.Spatial isomorphisms of algebras of truncated Toeplitz operators. Indiana Univ. Math. J. 59, 6 (2010), 1971–2000.Google Scholar
[233] Garnett, J. B.Bounded analytic functions, 1st edn, vol. 236 of Graduate Texts in Mathematics.Springer, New York, 2007.
[234] Gelfand, I.Normierte Ringe. Rec. Math. [Mat. Sbornik] N.S. 9 (51) (1941), 3–24.Google Scholar
[235] Gelfand, I. M.Remark on the work of N. K. Bari, “Biorthogonal systems and bases in Hilbert space.” Moskov. Gos. Univ. U?cenye Zap. Mat. 148(4) (1951), 224–225.Google Scholar
[236] Ghosechowdhury, S.A local expansion theorem for the Löwner equation. Integral Equations Operator Theory 48, 1 (2004), 1–25.Google Scholar
[237] Glover, K.All optimal Hankel-norm approximations of linear multivariable systems and their L ∞–error bounds. Int. J. Control 39, 6 (1984), 1115–1193.Google Scholar
[238] Gohberg, I. C.On linear equations in normed spaces. Dokl. Akad. Nauk SSSR (N.S.) 76 (1951), 477–480.Google Scholar
[239] Gohberg, I. C., and Feldman, I. A.Wiener–Hopf integro-difference equations. Dokl. Akad. Nauk SSSR 183 (1968), 25–28.Google Scholar
[240] Gohberg, I. C., and Feldman, I. A.Integro-difference Wiener–Hopf equations. Acta Sci. Math. (Szeged) 30 (1969), 199–224.Google Scholar
[241] Gohberg, I. C., and Kreĭn, M. G.Fundamental aspects of defect numbers, root numbers and indexes of linear operators. Uspekhi Mat. Nauk (N.S.) 12, 2(74) (1957), 43–118.Google Scholar
[242] Gohberg, I. C., and Kreĭn, M. G.Introduction to the theory of linear nonselfadjoint operators, vol. 18 of Translations of Mathematical Monographs. Translated from the Russian by A., Feinstein. American Mathematical Society, Providence, RI, 1969.
[243] Gohberg, I. C., and Krupnik, N. J.The algebra generated by the Toeplitz matrices. Funkcional. Anal. Prilozen. 3, 2 (1969), 46–56 (in Russian); Functional Anal. Appl. 3 (1969), 119–127.Google Scholar
[244] Grenander, U., and Szegö, G.Toeplitz forms and their applications. In California Monographs in Mathematical Sciences.University of California Press, Berkeley, CA, 1958.
[245] Grinblyum, M.Certains théorèmes sur la base dans un espace de type (B). Dokl. Akad. Nauk. SSSR 31 (1941), 428–432.Google Scholar
[246] Gurevich, L.Sur une propriété de la base dans l'espace de Hilbert. Dokl. Akad. Nauk. SSSR 30 (1941), 289–291.Google Scholar
[247] Hahn, H.Über lineare Gleichungssystem in linearen Raümen. J. Reine Angew. Math. 157 (1926), 214–229.Google Scholar
[248] Halmos, P. R.Normal dilations and extensions of operators. Summa Brasil. Math. 2 (1950), 125–134.Google Scholar
[249] Halmos, P. R.Introduction to Hilbert space and the theory of spectral multiplicity.Chelsea, New York, 1951.
[250] Halmos, P. R.Finite-dimensional vector spaces, 2nd edn. In University Series in Undergraduate Mathematics. Van Nostrand, Princeton, NJ, 1958.
[251] Halmos, P. R.Shifts on Hilbert spaces. J. Reine Angew. Math. 208 (1961), 102–112.Google Scholar
[252] Halmos, P. R.A glimpse into Hilbert space. In Lectures on Modern Mathematics, Vol. I.Wiley, New York, 1963, pp. 1–22.
[253] Halmos, P. R.A Hilbert space problem book, 2nd edn, vol. 19 of Graduate Texts in Mathematics. Springer, New York, 1982.
[254] Halmos, P. R.I want to be a mathematician: An automathography in three parts. In MAA Spectrum Series. Mathematical Association of America, Washington, DC, 1985.
[255] Hamburger, H.Über eine Erweiterung des Stieltjesschen Momentenproblems. Math. Ann. 81, 2–4 (1920), 235–319.Google Scholar
[256] Hankel, H.Über eine besondere Classe der symmetrischen Determinanten. PhD Thesis, Göttingen, 1861.
[257] Hardy, G. H., and Littlewood, J. E.Some new properties of Fourier constants. Math. Ann. 97, 1 (1927), 159–209.Google Scholar
[258] Hardy, G. H., Littlewood, J. E., and Pólya, G.Inequalities. In Cambridge Mathematical Library. Reprint of the 1952 edition. Cambridge University Press, Cambridge, UK, 1988.
[259] Hartman, P.On completely continuous Hankel matrices. Proc. Amer. Math. Soc. 9 (1958), 862–866.Google Scholar
[260] Hartman, P., and Wintner, A.On the spectra of Toeplitz's matrices. Amer. J. Math. 72 (1950), 359–366.Google Scholar
[261] Hartman, P., and Wintner, A.The spectra of Toeplitz's matrices. Amer. J. Math. 76 (1954), 867–882.Google Scholar
[262] Hartmann, A., Massaneda, X., Nicolau, A., and Ortega-Cerdà, J. Reverse Carleson measures in Hardy spaces. Collect. Math. to appear.
[263] Hartmann, A., and Ross, W. T.Boundary values in range spaces of co-analytic truncated Toeplitz operators. Publ. Mat. 56, 1 (2012), 191–223.Google Scholar
[264] Hartmann, A., Sarason, D., and Seip, K.Surjective Toeplitz operators. Acta Sci. Math. (Szeged) 70, 3–4 (2004), 609–621.Google Scholar
[265] Havin, V., and Mashreghi, J.Admissible majorants for model subspaces of H2. I. Slow winding of the generating inner function. Canad. J. Math. 55, 6 (2003), 1231–1263.Google Scholar
[266] Havin, V., and Mashreghi, J.Admissible majorants for model subspaces of H2. II. Fast winding of the generating inner function. Canad. J. Math. 55, 6 (2003), 1264–1301.Google Scholar
[267] Havin, V. P., Hruschëv, S. V., and Nikolskii, N. K. (Eds.) Linear and complex analysis problem book: 199 research problems, vol. 1043 of Lecture Notes in Mathematics.Springer, Berlin, 1984.
[268] Havin, V. P., and Nikolski, N. K.Stanislav Aleksandrovich Vinogradov, his life and mathematics. In Complex analysis, operators, and related topics, vol. 113 of Operator Theory: Advances and Applications.Birkhäuser, Basel, 2000, pp. 1–18.
[269] Havinson, S. Ya.On some extremal problems of the theory of analytic functions. Moskov. Gos. Univ. Učenye Zap. Mat. 148(4) (1951), 133–143.Google Scholar
[270] Hayashi, E.The solution of extremal problems in H1. Proc. Amer. Math. Soc. 93 (1985), 690–696.Google Scholar
[271] Hayashi, E.The kernel of a Toeplitz operator. Integral Equations Operator Theory 9, 4 (1986), 588–591.Google Scholar
[272] Hayashi, E.Classification of nearly invariant subspaces of the backward shift. Proc. Amer. Math. Soc. 110, 2 (1990), 441–448.Google Scholar
[273] Hayman, W.Interpolation by bounded functions. Ann. Inst. Fourier (Grenoble) 8 (1958), 277–290.Google Scholar
[274] Hayman, W. K., and Kennedy, P. B.Subharmonic functions. Vol. I. In London Mathematical Society Monographs, No. 9. Academic Press, London, 1976.
[275] Heinz, E.Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann. 123 (1951), 415–438.Google Scholar
[276] Heinz, E.Ein v. Neumannscher Satz über beschränkte Operatoren im Hilbertschen Raum. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1952 (1952), 5–6.Google Scholar
[277] Helly, E.Über lineare Funktionaloperationen. Sitzungsber. Math. Naturwiss. Kl. Akad. Wiss. 121 (1912), 265–291.Google Scholar
[278] Helly, E.Über Systeme linearer Gleichungen mit unendlich vielen Unbekannten. Monatsh. Math. Phys. 31, 1 (1921), 60–91.Google Scholar
[279] Helson, H.Lectures on invariant subspaces.Academic Press, New York, 1964.
[280] Helson, H.Large analytic functions. II. In Analysis and partial differential equations, vol. 122 of Lecture Notes in Pure and Applied Mathematics.Dekker, New York, 1990, pp. 217–220.
[281] Helson, H., and Lowdenslager, D.Invariant subspaces. In Proc. Int. Symp. on Linear Spaces (Jerusalem, 1960).Jerusalem Academic Press, Jerusalem, 1961, pp. 251–262.
[282] Helson, H., and Sarason, D.Past and future. Math. Scand 21 (1967), 5–16 (1968).Google Scholar
[283] Helson, H., and Szego, G.A problem in prediction theory. Ann. Mat. Pura Appl. (4) 51 (1960), 107–138.Google Scholar
[284] Herglotz, G.Über Potenzreihen mit positivem reellen Teil im Einheitskreis. Ber. Ver. Ges. Wiss. Leipzig 63 (1911), 501–511.Google Scholar
[285] Hilbert, D.Grundzüge einer allgemeinen Theorie der linearen Integralgleichung. Nach. Akad. Wiss. Göttingen Math. Phys. (1904), 49–91.Google Scholar
[286] Hilbert, D.Grundzüge einer allgemeinen Theorie der linearen integralgleichung. Nach. Akad. Wiss. Göttingen Math. Phys. (1906), 157–227.Google Scholar
[287] Hilbert, D.Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Fortschritte der Mathematischen Wissenschaften. Monographien Herausgegeben von Otto Blumenthal, Leipzig and Berlin, 1912.
[288] Hildebrandt, T. H.Convergence of sequences of linear operations. Bull. Amer. Math. Soc. 28, 1–2 (1922), 53–58.Google Scholar
[289] Hildebrandt, T. H.Über vollstetige lineare Transformationen. Acta Math. 51, 1 (1928), 311–318.Google Scholar
[290] Hitt, D.Invariant subspaces of H2 of an annulus. Pacific J. Math. 134, 1 (1988), 101–120.Google Scholar
[291] Hoffman, K.Banach spaces of analytic functions. Reprint of 1962 original. Dover, New York, 1988.
[292] Horn, R. A., and Johnson, C. R.Matrix analysis, 2nd edn. Cambridge University Press, Cambridge, UK, 2013.
[293] Hruscëv, S. V., Nikolskii, N. K., and Pavlov, B. S.Unconditional bases of exponentials and of reproducing kernels. In Complex analysis and spectral theory (Leningrad, 1979/1980), vol. 864 of Lecture Notes in Mathematics.Springer, Berlin, 1981, pp. 214–335.
[294] Hunt, R., Muckenhoupt, B., and Wheeden, R.Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973), 227–251.Google Scholar
[295] Ingham, A. E.Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41, 1 (1936), 367–379.Google Scholar
[296] Inoue, J.An example of a nonexposed extreme function in the unit ball of H1. Proc. Edinburgh Math. Soc. (2) 37, 1 (1994), 47–51.Google Scholar
[297] Inoue, J., and Nakazi, T.Polynomials of an inner function which are exposed points in H1. Proc. Amer. Math. Soc. 100, 3 (1987), 454–456.Google Scholar
[298] Iohvidov, I. S.Hankel and Toeplitz matrices and forms: Algebraic theory. Translated from Russian by G., Philip and A., Thijsse, with an introduction by I., Gohberg. Birkhäuser, Boston, MA, 1982.
[299] Johnson, W. B., and Lindenstrauss, J.Basic concepts in the geometry of Banach spaces. In Handbook of the geometry of Banach spaces, Vol. I. North- Holland, Amsterdam, 2001, pp. 1–84.Google Scholar
[300] Johnson, W. B., Rosenthal, H. P., and Zippin, M.On bases, finite dimensional decompositions and weaker structures in Banach spaces. Israel J. Math. 9 (1971), 488–506.Google Scholar
[301] Julia, G.Sur la représentation analytique des opérateurs bornés ou fermés de l'espace hilbertien.C. R. Acad. Sci. Paris 219 (1944), 225–227.Google Scholar
[302] Jury, M. T. An improved Julia–Carathéodory theorem for Schur–Agler mappings of the unit ball. arXiv:0707.3423v1, 2007.
[303] Jury, M. T.Norms and spectral radii of linear fractional composition operators on the ball.J. Funct. Anal. 254 (2008), 2387–2400.Google Scholar
[304] Jury, M. T.Reproducing kernels, de Branges–Rovnyak spaces, and norms of weighted composition operators.Proc. Amer. Math. Soc. 135, 11 (2007), 3669–3675 (electronic).Google Scholar
[305] Kabaĭla, V.On interpolation of functions of class Hδ.UspekhiMat. Nauk (N.S.)13, 1(79) (1958), 181–188.Google Scholar
[306] Kabaĭla, V.Sharpening some theorems on interpolation in the class Hδ.Vilniaus Valst. Univ. Mokslo Darbai Mat. Fiz. 9 (1960), 15–19.Google Scholar
[307] Kabaĭla, V. Interpolation sequences for the Hp classes in the case p < 1. Litovsk. Mat. Sbornik 3, 1 (1963), 141–147.
[308] Kaczmarz, S., and Steinhaus, H.Theorie der Orthogonalreihen, vol. VI in Monografje Matematyczne. Seminar. Matemat. Uniwers., Warsaw, 1935.
[309] Kadec, M. Ĭ. Bases and their spaces of coefficients.Dopovidi Akad. Nauk Ukräın. RSR 1964 (1964), 1139–1141.Google Scholar
[310] Kadec, M. Ĭ. The exact value of the Paley–Wiener constant.Dokl. Akad. Nauk SSSR 155 (1964), 1253–1254.Google Scholar
[311] Kapustin, V. V.Real functions in weighted Hardy spaces.Zap. Nauchn. Sem. St.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 262, Issled. Linein. Oper. Teor. Funkts. 27 (1999), 138–146, 233–234.Google Scholar
[312] Kapustin, V., and Poltoratski, A.Boundary convergence of vector-valued pseudocontinuable functions.J. Funct. Anal. 238, 1 (2006), 313–326.Google Scholar
[313] Karlin, S.Bases in Banach spaces.Duke Math. J. 15 (1948), 971–985.Google Scholar
[314] Kato, T.Perturbation theory for linear operators, vol. 132 of Die Grundlehren der mathematischen Wissenschaften. Springer, New York, 1966.
[315] Kellogg, C. N.Pseudo-uniform convexity in H1.Proc. Amer. Math. Soc. 23 (1969), 190–192.Google Scholar
[316] Kheifets, A.Hamburger moment problem: Parseval equality and A-singularity.J. Funct. Anal. 141, 2 (1996), 374–420.Google Scholar
[317] Klee, V. L., Jr., Extremal structure of convex sets. II.Math. Z. 69 (1958), 90–104.Google Scholar
[318] Kolmogorov, A.Stationary sequences in Hilbert space.Moscow Univ. Math. Bull. 2 (1941), 1–40.Google Scholar
[319] Kolmogorov, A. N.Sur les fonctions harmoniques conjugées et les séries de Fourier.Fund. Math. 7 (1925), 24–29.Google Scholar
[320] Koosis, P.Introduction to Hp spaces, 2nd edn, vol. 115 of Cambridge Tracts in Mathematics. With two appendices by V. P., Havin. Cambridge University Press, Cambridge, UK, 1998.
[321] Köthe, G., and Toeplitz, O.Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen.J. Reine Angew. Math. 171 (1934), 251–270.Google Scholar
[322] Kovalishina, I. V.The Carathéodory–Julia theorem for matrix-functions.Teor. Funktsiĭ Funktsional. Anal. Prilozhen., 43 (1985), 70–82.Google Scholar
[323] Kovalishina, I. V.Theory of a multiple j-elementary matrix-function with a pole on the boundary of the unit disk.Teor. Funktsiĭ Funktsional. Anal. Prilozhen., 50 (1988), 62–74, iii.Google Scholar
[324] Kreĭn, M.On a generalization of some investigations of G. Szegő, V. Smirnoff and A. Kolmogoroff.C. R. (Doklady) Acad. Sci. URSS (N.S.) 46 (1945), 91–94.Google Scholar
[325] Kreĭn, M., and Liusternik, L.Functional analysis. In “Thirty years of mathematics”.Trans. Amer. Math. Soc. 48 (1940), 467–487.Google Scholar
[326] Kreĭn, M., and Milman, D.On extreme points of regular convex sets.Studia Math. 9 (1940), 133–138.Google Scholar
[327] Kreĭn, M.G.On Bari bases of a Hilbert space.Uspekhi Mat. Nauk (N.S.) 12, 3(75) (1957), 333–341.Google Scholar
[328] Kreĭn, M.G.Integral equations on the half-line with a kernel depending on the difference of the arguments.Uspekhi Mat. Nauk 13, 5 (83) (1958), 3–120. (in Russian); Amer. Math. Soc. Transl. 22 (2), 163–288 (1962).Google Scholar
[329] Kriete, T., and Moorhouse, J.Linear relations in the Calkin algebra for composition operators.Trans. Amer. Math. Soc. 359, 6 (2007), 2915–2944 (electronic).Google Scholar
[330] Kronecker, L.Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen.Monatsber. Königl. Preuss. Akad. Wiss. (Berlin) (1881), 535–600.Google Scholar
[331] Kubrusly, C. S.Hilbert space operators. A problem solving approach. Birkhäuser, Boston, MA, 2003.
[332] Kuratowski, C.La propriété de baire dans les espaces métriques.Fund. Math. 16 (1930), 390–394.Google Scholar
[333] Kuratowski, C.Théorèmes sur les ensembles de première catégorie.Fund. Math. 16 (1930), 395–398.Google Scholar
[334] Lang, S.Real and functional analysis, 3rd edn, vol. 142 of Graduate Texts in Mathematics. Springer, New York, 1993.
[335] Lee, M., and Sarason, D.The spectra of some Toeplitz operators.J. Math. Anal. Appl. 33 (1971), 529–543.Google Scholar
[336] Lefèvre, P., Li, D., Queffélec, H., and Rodríguez-Piazza, L.Some revisited results about composition operators on Hardy spaces.Rev. Mat. Iberoamer. 28, 1 (2012), 57–76.Google Scholar
[337] Lindenstrauss, J.On operators which attain their norm.Israel J. Math. 1 (1963), 139–148.Google Scholar
[338] Lindenstrauss, J., and Tzafriri, L.Classical Banach spaces. I. Sequence spaces, vol. 92 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, 1977.
[339] Litvinchuk, G. S., and Spitkovskii, I. M.Factorization of measurable matrix functions, vol. 25 of Operator Theory: Advances and Applications. Translated from Russian by B., Luderer. Birkhäuser, Basel, 1987.
[340] Livšic, M. S.On a class of linear operators in Hilbert space.Mat. Sbornik N.S. 19 (1946), 239–262.Google Scholar
[341] Lorch, E. R.Bicontinuous linear transformations in certain vector spaces.Bull. Amer. Math. Soc. 45 (1939), 564–569.Google Scholar
[342] Lotto, B. A.Inner multipliers of de Branges's spaces.Integral Equations Operator Theory 13, 2 (1990), 216–230.Google Scholar
[343] Lotto, B. A.Toeplitz operators on weighted Hardy spaces. In Function spaces (Edwardsville, IL, 1990), vol. 136 of Lecture Notes in Pure and Applied Mathematics. Dekker, New York, 1992, pp. 295–300.
[344] Lotto, B. A., and Sarason, D.Multiplicative structure of de Branges's spaces.Rev. Mat. Iberoamer. 7, 2 (1991), 183–220.Google Scholar
[345] Lotto, B. A., and Sarason, D.Multipliers of de Branges–Rovnyak spaces.Indiana Univ. Math. J. 42, 3 (1993), 907–920.Google Scholar
[346] Lotto, B. A., and Sarason, D.Multipliers of de Branges–Rovnyak spaces. II. In Harmonic analysis and hypergroups (Delhi, 1995), in Trends in Mathematics. Birkhäuser, Boston, MA, 1998, pp. 51–58.
[347] Löwner, K.Über monotone Matrixfunktionen.Math. Z. 38, 1 (1934), 177–216.Google Scholar
[348] Luecking, D. H.The compact Hankel operators form an M-ideal in the space of Hankel operators.Proc. Amer. Math. Soc. 79, 2 (1980), 222–224.Google Scholar
[349] Lusin, N., and Priwaloff, J.Sur l'unicité et la multiplicité des fonctions analytiques.Ann. Sci. École Norm. Sup. (3) 42 (1925), 143–191.Google Scholar
[350] Makarov, N., and Poltoratski, A.Meromorphic inner functions, Toeplitz kernels and the uncertainty principle. In Perspectives in analysis, vol. 27 of Mathematical Physics Studies. Springer, Berlin, 2005, pp. 185–252.
[351] Markushevich, A.Sur les bases (au sens large) dans les espaces linéaires.C. R. (Doklady) Acad. Sci. URSS (N.S.) 41 (1943), 227–229.Google Scholar
[352] Marti, J. T.Introduction to the theory of bases, vol. 18 of Springer Tracts in Natural Philosophy. Springer, New York, 1969.
[353] Martínez-Avendano, R. A., and Rosenthal, P.An introduction to operators on the Hardy–Hilbert space, vol. 237 of Graduate Texts in Mathematics. Springer, New York, 2007.
[354] Mashreghi, J.Representation theorems in Hardy spaces, vol. 74 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, UK, 2009.
[355] Mashreghi, J.On a family of oute functions. In Complex analysis and potential theory, vol. 55 of CRM Proc. Lecture Notes. American Mathematical Society, Providence, R1, 2012, pp. 193–199.Google Scholar
[356] Mashreghi, J., Nazarov, F. L., and Havin, V. P.The Beurling–Malliavin multiplier theorem: the seventh proof.Algebra Analiz 17, 5 (2005), 3–68.Google Scholar
[357] Maurey, B.Isomorphismes entre espaces H1.Acta Math. 145, 1–2 (1980), 79–120.Google Scholar
[358] McCarthy, J. E.Boundary values and Cowen–Douglas curvature.J. Funct. Anal. 137, 1 (1996), 1–18.Google Scholar
[359] McGivney, R. J., and Ruckle, W.Multiplier algebras of biorthogonal systems.Pacific J. Math. 29 (1969), 375–387.Google Scholar
[360] Mercer, J.Functions of positive and negative type and their connection with the theory of integral equations.Phil. Trans. R. Soc. London 209(1909), 415–446.Google Scholar
[361] Miller, T. L., Smith, W., and Yang, L.Bounded point evaluations for certain Pt(μ) spaces.Illinois J. Math. 43, 1 (1999), 131–150.Google Scholar
[362] Minkowski, H.Gesammelte Abhandlungen. B. G. Teubner, Leipzig, 1911.
[363] Moeller, J. W.On the spectra of some translation invariant spaces.J. Math. Anal. Appl. 4 (1962), 276–296.Google Scholar
[364] Moore, E.General analysis. In Memoirs of the American Philosophical Society. American Philosophical Society, Philadelphia, 1935.
[365] Muckenhoupt, B.Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226.Google Scholar
[366] Murray, F. J., and Von Neumann, J.On rings of operators.Ann. of Math. (2) 37, 1 (1936), 116–229.Google Scholar
[367] Naftalevič, A. G.On interpolation by functions of bounded characteristic.Vilniaus Valst. Univ. Mokslų Darbai. Mat. Fiz. Chem. Mokslų Ser. 5 (1956), 5–27.Google Scholar
[368] Nakamura, Y.One-dimensional perturbations of the shift.Integral Equations Operator Theory 17, 3 (1993), 373–403.Google Scholar
[369] Nakazi, T.Exposed points and extremal problems in H1.J. Funct. Anal. 53 (1983), 224–230.Google Scholar
[370] Nakazi, T.Exposed points and extremal problems in H1, II.Tôhoku Math. J. 37 (1985), 265–269.Google Scholar
[371] Nakazi, T.Toeplitz operators and weighted norm inequalities.Acta Sci. Math. (Szeged) 58, 1–4 (1993), 443–452.Google Scholar
[372] Nazarov, F., and Volberg, A.The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces Kθ.J. Anal. Math. 87 (2002), 385–414.Google Scholar
[373] Nehari, Z.On bounded bilinear forms.Ann. of Math. (2) 65 (1957), 153–162.Google Scholar
[374] Neuwirth, J., and Newman, D. J.Positive H1/2 functions are constants.Proc. Amer. Math. Soc. 18 (1967), 958.Google Scholar
[375] Nevanlinna, F., and Nevanlinna, R.Über die Eigenschaften analytischer Funktionen in der Umgebung einer singulären Stelle oder Linie.Acta Soc. Sci. Fennicae 50 (1922), 1–46.Google Scholar
[376] Newman, D. J.Interpolation in H∞.Trans. Amer. Math. Soc. 92 (1959), 501–507.Google Scholar
[377] Newman, D. J.Pseudo-uniform convexity in H1.Proc. Amer. Math. Soc. 14 (1963), 676–679.Google Scholar
[378] Newns, W. F.On the representation of analytic functions by infinite series.Phil. Trans. R. Soc. London. Ser. A. 245 (1953), 429–468.Google Scholar
[379] Nikolskii, N. K.Invariant subspaces in operator theory and function theory. In Mathematical analysis, Vol. 12 (in Russian). Akad. Nauk SSSR Vsesojuz. Inst. Naučn. Tehn. Informacii, Moscow, 1974, pp. 199–412, 468.Google Scholar
[380] Nikolskii, N. K.Lectures on the shift operator. II.Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 47, Issled. Linein. Oper. Teor. Funktsii. 5 (1974), 90–119, 186–187, 192.Google Scholar
[381] Nikolskii, N. K.Selected problems of weighted approximation and spectral analysis. Translated from Russian by F. A., Cezus. American Mathematical Society, Providence, RI, 1976.
[382] Nikolskii, N. K.Bases of invariant subspaces and operator interpolation. Spectral theory of functions and operators.Trudy Mat. Inst. Steklov. 130 (1978), 50–123, 223.Google Scholar
[383] Nikolskii, N. K.Bases of exponentials and values of reproducing kernels.Dokl. Akad. Nauk SSSR 252, 6 (1980), 1316–1320.Google Scholar
[384] Nikolskii, N. K.What problems do spectral theory and complex analysis solve for each other? In Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Acad. Sci. Fennica, Helsinki, 1980, pp. 631–638.Google Scholar
[385] Nikolskii, N. K.Ha-plitz operators: a survey of some recent results. In Operators and function theory (Lancaster, 1984), vol. 153 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.Reidel, Dordrecht, 1985, pp. 87–137.
[386] Nikolskii, N. K.Treatise on the shift operator. Spectral function theory, vol. 273 of Grundlehren der Mathematischen Wissenschaften. With appendix by S. V., Hruščev and V. V., Peller. Translated from Russian by J., Peetre. Springer, Berlin, 1986.
[387] Nikolskii, N. K.Operators, functions, and systems: an easy reading. Vol. 1, Hardy, Hankel and Toeplitz, vol. 92 of Mathematical Surveys and Monographs. Translated from French by A., Hartmann and revised by the author. American Mathematical Society, Providence, RI, 2002.
[388] Nikolskii, N. K.Operators, functions, and systems: an easy reading. Vol. 2, Model operators and systems, vol. 93 ofMathematical Surveys and Monographs. Translated from French by A.|Hartmann and revised by the author. American Mathematical Society, Providence, RI, 2002.Google Scholar
[389] Nikolskii, N. K., and Pavlov, B. S.Eigenvector expansions of nonunitary operators, and the characteristic function.Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 11 (1968), 150–203.Google Scholar
[390] Nikolskii, N. K., and Pavlov, B. S.Bases of eigenvectors, characteristic function and interpolation problems in the Hardy space H2.Dokl. Akad. Nauk SSSR 184 (1969), 550–553.Google Scholar
[391] Nikolskii, N. K., and Pavlov, B. S.Bases from the eigenvectors of totally nonunitary contractions.Dokl. Akad. Nauk SSSR 184 (1969), 778–781.Google Scholar
[392] Nikolskii, N. K., and Pavlov, B. S.Bases of eigenvectors of completely nonunitary contractions, and the characteristic function.Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 90–133.Google Scholar
[393] Nikolskii, N. K., and Vasyunin, V. I.Notes on two function models. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 113–141.
[394] Nikolskii, N. K., and Vasyunin, V. I.Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. I. In Functional analysis and related topics (Sapporo, 1990). World Scientific, River Edge, NJ, 1991, pp. 19–28.
[395] Nikolskii, N. K., and Vasyunin, V. I.Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. II. In Progress in approximation theory (Tampa, FL, 1990), vol. 19 of Springer Series in Computational Mathematics. Springer, New York, 1992, pp. 315–331.
[396] Nikolskii, V. N.Some questions of best approximation in a function space.Uč. Zap. Kalininsk. Pedagog. Inst. 16 (1953), 119–160 (1954).Google Scholar
[397] Noether, F.Über eine Klasse singulärer Integralgleichungen.Math. Ann. 82, 1–2 (1920), 42–63.Google Scholar
[398] Orlicz, W.Beiträge zur Theorie der Orthogonalentwicklungen, I.Studia Math. 1 (1929), 1–39.Google Scholar
[399] Orlicz, W.Über unbedingte Konvergenz in Funktionenraümen.Studia Math. 2 (1933), 41–47.Google Scholar
[400] Page, L. B.Bounded and compact vectorial Hankel operators.Trans. Amer. Math. Soc. 150 (1970), 529–539.Google Scholar
[401] Paley, R. E. A. C., and Wiener, N.Fourier transforms in the complex domain, vol. 19 of American Mathematical Society Colloquium Publications. Reprint of the 1934 original. American Mathematical Society, Providence, RI, 1987.
[402] Parrott, S.On a quotient norm and the Sz.-Nagy–Foiaş lifting theorem.J. Funct. Anal. 30, 3 (1978), 311–328.Google Scholar
[403] Paulsen, V. I., and Singh, D.A Helson–Lowdenslager–de Branges theorem in L2.Proc. Amer. Math. Soc. 129, 4 (2001), 1097–1103 (electronic).Google Scholar
[404] Pełczyński, A.All separable Banach spaces admit for everyϵ > 0 fundamental total and bounded by 1 + ϵ biorthogonal sequences. Studia Math. 55, 3 (1976), 295–304.Google Scholar
[405] Peller, V. V.Hankel operators of class Spand their applications (rational approximation, Gaussian processes, the problem of majorization of operators).Mat. Sbornik (N.S.) 113(155), 4(12) (1980), 538–581, 637.Google Scholar
[406] Peller, V. V.Description of Hankel operators of the class Sp forp > 0, investigation of the rate of rational approximation and other applications.Mat. Sbornik (N.S.) 122(164), 4 (1983), 481–510.Google Scholar
[407] Peller, V. V.Hankel operators in the theory of perturbations of unitary and selfadjoint operators.Funktsional. Anal. Prilozhen. 19, 2 (1985), 37–51, 96.Google Scholar
[408] Peller, V. V.Hankel operators and their applications. In Springer Monographs in Mathematics. Springer, New York, 2003.
[409] Peller, V. V., and Khrushchëv, S. V.Hankel operators, best approximations and stationary Gaussian processes.Uspekhi Mat. Nauk 37, 1(223) (1982), 53–124, 176.Google Scholar
[410] Petermichl, S., Treil, S., and Wick, B. D.Carleson potentials and the reproducing kernel thesis for embedding theorems.Illinois J. Math. 51, 4 (2007), 1249–1263.Google Scholar
[411] Phelps, R. R.Dentability and extreme points in Banach spaces.J. Funct. Anal. 17 (1974), 78–90.Google Scholar
[412] Pick, G.Über die Beschränkungen analytische Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden.Math. Ann. 77 (1916), 7–23.Google Scholar
[413] Plemelj, J.Ein Ergänzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend.Monatsh. Math. Phys. 19, 1 (1908), 205–210.Google Scholar
[414] Poltoratski, A. G.Boundary behavior of pseudocontinuable functions.Algebra Analiz 5, 2 (1993), 189–210.Google Scholar
[415] Poltoratski, A. G.Properties of exposed points in the unit ball of H1.Indiana Univ. Math. J. 50, 4 (2001), 1789–1806.Google Scholar
[416] Poltoratski, A.Integral representations and uniqueness sets for star-invariant subspaces. In Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), vol. 129 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2001, pp. 425–443.
[417] Poltoratski, A., and Sarason, D.Aleksandrov–Clark measures. In Recent advances in operator-related function theory, vol. 393 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 2006, pp. 1–14.
[418] Privalov, I. Intégrale de Cauchy. PhD Thesis, Saratov, 1919.
[419] Read, C. J.A solution to the invariant subspace problem.Bull. London Math. Soc. 16, 4 (1984), 337–401.Google Scholar
[420] Read, C. J.A solution to the invariant subspace problem on the space l1.Bull. London Math. Soc. 17, 4 (1985), 305–317.Google Scholar
[421] Reed, M., and Simon, B.Methods of modern mathematical physics. I. Functional analysis, 2nd edn. Academic Press, New York, 1980.
[422] Retherford, J. R.Hilbert space: compact operators and the trace theorem, vol. 27 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, UK, 1993.
[423] Riesz, F.Sur certains systèmes d’équations intégrales.Ann. École Norm. Sup. 28, 3 (1911), 33–62.Google Scholar
[424] Riesz, F.Les systèmes d’équations linéaires à une infinité d'inconnues. Gauthier Villars, Paris, 1913.
[425] Riesz, F.Über ein Problem des Herrn Carathéodory.J. Reine Angew. Math. 146 (1916), 83–87.Google Scholar
[426] Riesz, F.Über lineare Funktionalgleichungen.Acta Math. 41, 1 (1916), 71–98.Google Scholar
[427] Riesz, F.Über die Randwerte einer analytischen Funktion.Math. Z. 18 (1923), 87–95.Google Scholar
[428] Riesz, F.Sur la décomposition des opérateurs linéaires.Atti Congr. Int. Mat., Bologna, 3, 1928.Google Scholar
[429] Riesz, F.Über die linearen Transformationen des komplexen Hilbertschen Raumes.Acta. Sci. Math. Szeged 5, 1 (1930), 23–54.Google Scholar
[430] Riesz, F., and Riesz, M.Über die Randwerte einer analytischen Funktion.Quatrieme Congrés des Mathématiciens Scandinaves, Stockholm, 1916, pp. 27–44.Google Scholar
[431] Riesz, F., and Sz.-Nagy, B.Functional analysis. In Dover Books on Advanced Mathematics. Translated from French 2nd edn by L. F., Boron. Reprint of 1955 original. Dover, New York, 1990.
[432] Riesz, M.Sur le problème des moments, troisième note.Ark. Mat. Astr. Fys. 17, 16 (1923), 62pp.Google Scholar
[433] Riesz, M.Sur les fonctions conjuguées.Math. Z. 27, 1 (1928), 218–244.Google Scholar
[434] Ringrose, J.Compact non-self-adjoint operators, vol. 35 of Van Nostrand Reinhold Mathematical Studies. Van Nostrand Reinhold, London, 1971.
[435] Rogosinski, W. W., and Shapiro, H. S.On certain extremum problems for analytic functions.Acta Math. 90 (1953), 287–318.Google Scholar
[436] Romberg, B. The Hp spaces with 0 < p < 1. PhD Thesis, University of Rochester, NY, 1960.
[437] Rosenblum, M., and Rovnyak, J.Hardy classes and operator theory. Corrected reprint of 1985 original. Dover, Mineola, NY, 1997.
[438] Rovnyak, J. Characterization of spaces H(m). Unpublished paper, 1968.
[439] Rovnyak, J.An extension problem for the coefficients of Riemann mappings.Operator Theory Seminar, University of Virginia, 1991.Google Scholar
[440] Rovnyak, J.Methods of Kreĭn space operator theory. In Interpolation theory, systems theory and related topics (Tel Aviv/Rehovot, 1999), vol. 134 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2002, pp. 31–66.
[441] Rudin, W.Functional analysis. In McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973.
[442] Rudin, W.Real and complex analysis, 2nd edn. In McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1974.
[443] Sand, M.Operator ranges and non-cyclic vectors for the backward shift.Integral Equations Operator Theory 22, 2 (1995), 212–231.Google Scholar
[444] Sarason, D.The Hp spaces of an annulus.Mem. Amer. Math. Soc. 56 (1965), 78.Google Scholar
[445] Sarason, D.On spectral sets having connected complement.Acta Sci. Math. (Szeged) 26 (1965), 289–299.Google Scholar
[446] Sarason, D.A remark on the Volterra operator.J. Math. Anal. Appl. 12 (1965), 244–246.Google Scholar
[447] Sarason, D.Generalized interpolation in H∞.Trans. Amer. Math. Soc. 127 (1967), 179–203.Google Scholar
[448] Sarason, D.Weak-star density of polynomials.J. Reine Angew. Math. 252 (1972), 1–15.Google Scholar
[449] Sarason, D.Functions of vanishing mean oscillation.Trans. Amer. Math. Soc. 207 (1975), 391–405.Google Scholar
[450] Sarason, D.Function theory on the unit circle. Notes for lectures given at Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, June 19–23, 1978.
[451] Sarason, D.Doubly shift-invariant spaces in H2. J. Operator Theory 16, 1 (1986), 75–97.Google Scholar
[452] Sarason, D.Shift-invariant spaces from the Brangesian point of view. In The Bieberbach conjecture (West Lafayette, IN, 1985), vol. 21 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986, pp. 153–166.
[453] Sarason, D.Angular derivatives via Hilbert space. Complex Variables Theory Appl. 10, 1 (1988), 1–10.Google Scholar
[454] Sarason, D.Nearly invariant subspaces of the backward shift. In Contributions to operator theory and its applications (Mesa, AZ, 1987), vol. 35 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1988, pp. 481–493.
[455] Sarason, D.Exposed points in H1. I. In The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), vol. 41 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1989, pp. 485–496.
[456] Sarason, D.Exposed points in H1. II. In Topics in operator theory: Ernst D. Hellinger memorial volume, vol. 48 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1990, pp. 333–347.
[457] Sarason, D.Composition operators as integral operators. In Analysis and partial differential equations, vol. 122 of Lecture Notes in Pure and Applied Mathematics. Dekker, New York, 1990, pp. 545–565.
[458] Sarason, D.Weak compactness of holomorphic composition operators on H1. In Functional analysis and operator theory (New Delhi, 1990), vol. 1511 of Lecture Notes in Mathematics. Springer, Berlin, 1992, pp. 75–79.
[459] Sarason, D.Kernels of Toeplitz operators. In Toeplitz operators and related topics (Santa Cruz, CA, 1992), vol. 71 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1994, pp. 153–164.
[460] Sarason, D.Sub-Hardy Hilbert spaces in the unit disk, no. 10 in University of Arkansas Lecture Notes in the Mathematical Sciences. Wiley-Interscience, New York, 1994.
[461] Sarason, D.Local Dirichlet spaces as de Branges–Rovnyak spaces. Proc. Amer. Math. Soc. 125, 7 (1997), 2133–2139.Google Scholar
[462] Sarason, D.Harmonically weighted Dirichlet spaces associated with finitely atomic measures. Integral Equations Operator Theory 31, 2 (1998), 186–213.Google Scholar
[463] Sarason, D.Errata: “Harmonically weighted Dirichlet spaces associated with finitely atomic measures”. Integral Equations Operator Theory 36, 4 (2000), 499–504.Google Scholar
[464] Sarason, D.Nevanlinna–Pick interpolation with boundary data. Integral Equations Operator Theory 30, 2 (1998), 231–250.Google Scholar
[465] Sarason, D.Algebraic properties of truncated Toeplitz operators. Oper. Matrices 1, 4 (2007), 491–526.Google Scholar
[466] Sarason, D.Unbounded operators commuting with restricted backward shifts. Oper. Matrices 2, 4 (2008), 583–601.Google Scholar
[467] Schauder, J.Zur Theorie stetiger Abbildungen in Funktionalräumen. Math. Z. 26, 1 (1927), 47–65.Google Scholar
[468] Schauder, J.Über lineare vollstetige Funktionaloperationen. Studia Math. 2 (1930), 183–196.Google Scholar
[469] Schmidt, E.Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 63 (1907), 433–476.Google Scholar
[470] Schmidt, E.Über die Auflösung linearen Gleichungen mit unendlich vielen Unbekanten. Rend. Circ. Mat. Palermo 25 (1908), 53–77.Google Scholar
[471] Schur, I.Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, I. J. Reine Angew. Math. 147 (1917), 205–232.Google Scholar
[472] Schur, I.Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, II. J. Reine Angew. Math. 148 (1918), 122–145.Google Scholar
[473] Sedlock, N. A.Algebras of truncated Toeplitz operators. Oper. Matrices 5, 2 (2011), 309–326.Google Scholar
[474] Segal, I. E.Irreducible representations of operator algebras. Bull. Amer. Math. Soc. 53 (1947), 73–88.Google Scholar
[475] Shapiro, H. S.Weakly invertible elements in certain function spaces, and generators in l 1. Michigan Math. J. 11 (1964), 161–165.Google Scholar
[476] Shapiro, H. S.Generalized analytic continuation. In Symposia on Theoretical Physics and Mathematics, Vol. 8 (Madras, 1967). Plenum, New York, 1968, pp. 151–163.
[477] Shapiro, H. S., and Shields, A. L.On some interpolation problems for analytic functions. Amer. J. Math. 83 (1961), 513–532.Google Scholar
[478] Shapiro, H. S., and Shields, A. L.Interpolation in Hilbert spaces of analytic functions. Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 109–110.Google Scholar
[479] Shapiro, J. E.Aleksandrov measures used in essential norm inequalities for composition operators. J. Operator Theory 40, 1 (1998), 133–146.Google Scholar
[480] Shapiro, J. E.Relative angular derivatives. J. Operator Theory 46, 2 (2001), 265–280.Google Scholar
[481] Shapiro, J. E.More relative angular derivatives. J. Operator Theory 49, 1 (2003), 85–97.Google Scholar
[482] Shapiro, J. H., and Sundberg, C.Compact composition operators on L1. Proc. Amer. Math. Soc. 108, 2 (1990), 443–449.Google Scholar
[483] Shields, A. L., and Wallen, L. J.The commutants of certain Hilbert space operators. Indiana Univ. Math. J. 20 (1970/1971), 777–788.Google Scholar
[484] Simon, B., and Wolff, T.Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math. 39, 1 (1986), 75–90.Google Scholar
[485] Singer, I.Weak* bases in conjugate Banach spaces. Studia Math. 21 (1961/1962), 75–81.Google Scholar
[486] Singer, I.Bases in Banach spaces. I, vol. 154 of Die Grundlehren der Mathematischen Wissenschaften. Springer, New York, 1970.
[487] Singh, D., and Thukral, V.Multiplication by finite Blaschke factors on de Branges spaces. J. Operator Theory 37, 2 (1997), 223–245.Google Scholar
[488] Smirnov, V.Sur la théorie des polynômes orthogonaux à une variable complexe. J. Leningrad Fiz.-Mat. Obsch. 2, 1 (1928), 155–179.Google Scholar
[489] Smirnov, V.Sur les valeurs limites des fonctions régulières à l'intérieur d'un cercle. J. Leningrad Fiz.-Mat. Obsch. 2, 2 (1928), 22–37.Google Scholar
[490] Smirnov, V.Sur les formules de Cauchy et Green et quelques problèmes qui s'y rattachent. Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat. 3 (1932), 338–372.Google Scholar
[491] Šmulian, V.Über lineare topologische Raüme.Rec. Math. [Mat. Sbornik] N.S. 7 (49) (1940), 425–448.Google Scholar
[492] Sokhotski, Y. On definite integrals and functions using series expansions. PhD Thesis, St. Petersburg, 1873.
[493] Srinivasan, T. P., and Wang, J.-K.On closed ideals of analytic functions. Proc. Amer. Math. Soc. 16 (1965), 49–52.Google Scholar
[494] Stampfli, J. G.On hyponormal and Toeplitz operators. Math. Ann. 183 (1969), 328–336.Google Scholar
[495] Stein, E. M.Singular integrals, harmonic functions, and differentiability properties of functions of several variables. In Singular integrals (Proc. Symp. Pure Math., Chicago, IL, 1966). American Mathematical Society, Providence, RI, 1967, pp. 316–335.
[496] Stone, M.Linear transformations in Hilbert space and their applications to analysis, vol. 15 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1932.
[497] Straszewicz, S.Über exponierte Punkte abgeschlossener Punktmengen. Fund. Math. 24 (1935), 139–143.Google Scholar
[498] Strauss, Y.Sz.-Nagy–Foias theory and Lax–Phillips type semigroups in the description of quantum mechanical resonances. J. Math. Phys. 46, 3 (2005), 1–25.Google Scholar
[499] Suárez, D.Multipliers of de Branges–Rovnyak spaces in H2. Rev. Mat. Iberoamer. 11, 2 (1995), 375–415.Google Scholar
[500] Suárez, D.Backward shift invariant spaces in H2. Indiana Univ. Math. J. 46, 2 (1997), 593–619.Google Scholar
[501] Suárez, D.Closed commutants of the backward shift operator. Pacific J. Math. 179, 2 (1997), 371–396.Google Scholar
[502] Sultanic, S.Sub-Bergman Hilbert spaces. J. Math. Anal. Appl. 324, 1 (2006), 639–649.Google Scholar
[503] Sz.-Nagy, B.On semi-groups of self-adjoint transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 24 (1938), 559–560.Google Scholar
[504] Sz.-Nagy, B.Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, no. 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, 1942.
[505] Sz.-Nagy, B.Sur les contractions de l'espace de Hilbert. Acta Sci. Math. (Szeged) 15 (1953), 87–92.Google Scholar
[506] Sz.-Nagy, B., and Foiaş, C.Commutants de certains opérateurs. Acta Sci. Math. (Szeged) 29 (1968), 1–17.Google Scholar
[507] Sz.-Nagy, B., and Foiaş, C.Dilatation des commutants d'opérateurs. C. R. Acad. Sci. Paris, Sér. A–B 266 (1968), A493–A495.Google Scholar
[508] Sz.-Nagy, B., and Foiaş, C.Harmonic analysis of operators on Hilbert space. Translated from French and revised. North-Holland, Amsterdam, 1970.
[509] Szegoʺ, G.Über die Entwickelung einer analytischen Funktion nach den Polynomen eines Orthogonalsystems. Math. Ann. 82, 3–4 (1921), 188–212.Google Scholar
[510] Szegoʺ, G.Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören. Math. Z. 9, 3–4 (1921), 218–270.Google Scholar
[511] Szegʺ o, G.Beitrage zur Theorie der Toeplitzchen Formen, I. Math. Z. 6 (1920), 167–202.Google Scholar
[512] Szegoʺ, G.Über die Randwerte einer analytischen Funktion. Math. Ann. 84, 3–4 (1921), 232–244.Google Scholar
[513] Takenaka, S.On the orthonormal functions and a new formula of interpolation. Jpn. J. Math. 2 (1925), 129–145.Google Scholar
[514] Taussky, O. Aremark concerning the characteristic roots of the finite segments of the Hilbert matrix. Q. J. Math., Oxford 20 (1949), 80–83.Google Scholar
[515] Taylor, A. E.The resolvent of a closed transformation.Bull. Amer. Math. Soc. 44, 2 (1938), 70–74.Google Scholar
[516] Taylor, A. E.Weak convergence in the spaces Hp. Duke Math. J. 17 (1950), 409–418.Google Scholar
[517] Taylor, A. E.Banach spaces of functions analytic in the unit circle. I. Studia Math. 11 (1950), 145–170.Google Scholar
[518] Taylor, A. E.Banach spaces of functions analytic in the unit circle. II. Studia Math. 12 (1951), 25–50.Google Scholar
[519] Taylor, G. D.Contributions to the theory of multipliers. PhD Thesis, University of Michigan, Ann Arbor, MI, 1965.
[520] Temme, D., and Wiegerinck, J.Extremal properties of the unit ball in H1. Indag. Math. (N.S.) 3, 1 (1992), 119–127.Google Scholar
[521] Thomson, J. E.Approximation in the mean by polynomials. Ann. of Math. (2) 133, 3 (1991), 477–507.Google Scholar
[522] Toeplitz, O.Über die Fouriersche Entwickelung positiver Funktionen. Rend. Circ. Mat. Palermo 32 (1911), 191–192.Google Scholar
[523] Toeplitz, O.Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen. Math. Ann. 70, 3 (1911), 351–376.Google Scholar
[524] Tolokonnikov, V. A.Estimates in the Carleson corona theorem, ideals of the algebra H∞, a problem of Sz.-Nagy. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113, Issled. Linein. Oper. Teor. Funktsii. 11 (1981), 178– 198, 267.Google Scholar
[525] Treil, S. R.Angles between co-invariant subspaces, and the operator corona problem. The Szʺokefalvi-Nagy problem. Dokl. Akad. Nauk SSSR 302, 5 (1988), 1063–1068.Google Scholar
[526] Treil, S. R.Hankel operators, embedding theorems and bases of co-invariant subspaces of the multiple shift operator. Algebra Analiz 1, 6 (1989), 200–234.Google Scholar
[527] Troyanski, S. L.On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math. 37 (1970/71), 173–180.Google Scholar
[528] Vigier, J. P.Etude sur les suites infinies d'opérateurs hermitiens. PhD Thesis, Geneva, 1946.
[529] Vinogradov, S. A., and Havin, V. P.Free interpolation in H ∞ and in certain other classes of functions. I. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 47, Issled. Linein. Oper. Teor. Funktsii. 5 (1974), 15–54, 184– 185, 191.Google Scholar
[530] Vinogradov, S. A., and Havin, V. P.Free interpolation in H ∞ and in certain other classes of functions. II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56, Issled. Linein. Oper. Teor. Funktsii. 6 (1976), 12–58, 195.Google Scholar
[531] Visser, C.Note on linear operators. Proc. Acad. Amsterdam 40 (1937), 270–272.Google Scholar
[532] Volberg, A. L.Thin and thick families of rational fractions. In Complex analysis and spectral theory (Leningrad, 1979/1980), vol. 864 of Lecture Notes in Mathematics. Springer, Berlin, 1981, pp. 440–480.
[533] Volberg, A. L. Two remarks concerning the theorem of S., Axler, S.-Y. A., Chang and D., Sarason. J. Operator Theory 7, 2 (1982), 209–218.
[534] Volberg, A. L., and Treil, S. R.Embedding theorems for invariant subspaces of the inverse shift operator. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149, Issled. Linein. Teor. Funktsii. 15 (1986), 38–51, 186–187.Google Scholar
[535] von Neumann, J.Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math. Ann. 102, 1 (1930), 49–131.Google Scholar
[536] von Neumann, J.Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Math. Ann. 102, 1 (1930), 370–427.Google Scholar
[537] von Neumann, J.Ü ber adjungierte Funktionaloperatoren. Ann. of Math. (2) 33, 2 (1932), 294–310.Google Scholar
[538] von Neumann, J.On a certain topology for rings of operators. Ann. of Math. (2) 37, 1 (1936), 111–115.Google Scholar
[539] von Neumann, J.On rings of operators, III. Ann. of Math. (2) 41 (1940), 94–161.Google Scholar
[540] von Neumann, J.Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Math. Nachr. 4 (1951), 258–281.Google Scholar
[541] Walsh, J. L.Interpolation and approximation by rational functions in the complex domain, 4th edn, vol. 20 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1965.
[542] Walters, S. S.The space Hpwith 0 < p < 1. Proc. Amer. Math. Soc.1 (1950), 800–805.Google Scholar
[543] Walters, S. S.Remarks on the space Hp. Pacific J. Math. 1 (1951), 455–471.Google Scholar
[544] Wecken, F. J.Zur Theorie linearer Operatoren. Math. Ann. 110, 1 (1935), 722–725.Google Scholar
[545] Wermer, J.On algebras of continuous functions. Proc. Amer. Math. Soc. 4 (1953), 866–869.Google Scholar
[546] Weyl, H.Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68, 2 (1910), 220–269.Google Scholar
[547] Whitley, R.An elementary proof of the Eberlein– Šmulian theorem. Math. Ann. 172 (1967), 116–118.Google Scholar
[548] Widom, H.Inversion of Toeplitz matrices. II. Illinois J. Math. 4 (1960), 88–99.Google Scholar
[549] Widom, H.Inversion of Toeplitz matrices. III. Notices Amer. Math. Soc. 7 (1960), 63.Google Scholar
[550] Widom, H.On the spectrum of a Toeplitz operator. Pacific J. Math. 14 (1964), 365–375.Google Scholar
[551] Widom, H.Hankel matrices. Trans. Amer. Math. Soc. 121 (1966), 1–35.Google Scholar
[552] Widom, H.Toeplitz operators on Hp. Pacific J. Math. 19 (1966), 573–582.Google Scholar
[553] Wiegerinck, J.A characterization of strongly exposed points of the unit ball of H1. Indag. Math. (N.S.) 4, 4 (1993), 509–519.Google Scholar
[554] Wiener, N.The Fourier integral and certain of its applications. In Cambridge Mathematical Library. Reprint of 1933 edition. Cambridge University Press, Cambridge, UK, 1988.
[555] Wintner, A.Zur Theorie der beschränkten Bilinearformen. Math. Z. 30, 1 (1929), 228–281.Google Scholar
[556] Wojtaszczyk, P.The Franklin system is an unconditional basis inH1. Ark. Mat. 20, 2 (1982), 293–300.Google Scholar
[557] Wojtaszczyk, P.Banach spaces for analysts, vol. 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, UK, 1991.
[558] Wold, H.A study in the analysis of stationary time series, 2nd edn, with an appendix by P., Whittle.Almqvist and Wiksell, Stockholm, 1954.
[559] Yabuta, K.Remarks on extremum problems in H1. Tohoku Math. J. 23 (1971), 129–137.Google Scholar
[560] Yabuta, K.Unicity of the extremum problems in H1 (Un). Proc. Amer. Math. Soc. 28 (1971), 181–184.Google Scholar
[561] Yabuta, K.Some uniqueness theorems for Hp(Un) functions. Tohoku Math. J. 24 (1972), 353–357.Google Scholar
[562] Yamazaki, S.Normed rings and bases in Banach spaces. Sci. Papers College Gen. Educ. Univ. Tokyo 15 (1965), 1–13.Google Scholar
[563] Yood, B.Properties of linear transformations preserved under addition of a completely continuous transformation. Duke Math. J. 18 (1951), 599–612.Google Scholar
[564] Yosida, K.Functional analysis. In Classics in Mathematics. Reprint of 6th (1980) edition. Springer, Berlin, 1995.
[565] Young, N.An introduction to Hilbert space. In Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, UK, 1988.
[566] Young, R. M.An introduction to nonharmonic Fourier series, vol. 93 of Pure and Applied Mathematics. Academic Press, New York, 1980.
[567] Zaremba, S.L'équation biharmonique et une classe remarquable de fonctions fondamentales harmoniques. Bull. Int. Acad. Sci. Cracovie (1907), 147–196.Google Scholar
[568] Zhu, K.Sub-Bergman Hilbert spaces on the unit disk. Indiana Univ. Math. J. 45, 1 (1996), 165–176.Google Scholar
[569] Zhu, K.Sub-Bergman Hilbert spaces in the unit disk. II. J. Funct. Anal. 202, 2 (2003), 327–341.Google Scholar
[570] Zhu, K.Operator theory in function spaces, 2nd edn, vol. 138 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.
[571] Zygmund, A.Sur les fonctions conjugées. Fund. Math. 13 (1929), 284–303.Google Scholar
[572] Zygmund, A.Trigonometric series. Vols. I, II, 2nd edn. Cambridge University Press, New York, 1959.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Emmanuel Fricain, Javad Mashreghi, Université Laval, Québec
  • Book: The Theory of <I>H</I>(<I>b</I>) Spaces
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139226752.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Emmanuel Fricain, Javad Mashreghi, Université Laval, Québec
  • Book: The Theory of <I>H</I>(<I>b</I>) Spaces
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139226752.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Emmanuel Fricain, Javad Mashreghi, Université Laval, Québec
  • Book: The Theory of <I>H</I>(<I>b</I>) Spaces
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139226752.018
Available formats
×