Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T21:15:43.729Z Has data issue: false hasContentIssue false

10 - Tomography

Published online by Cambridge University Press:  19 August 2009

Richard E. Blahut
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Suppose that one is given several images of a two-dimensional (or a multidimensional) object, but that the detail of each of these images is limited in some way. For example, the images may be projections of a multidimensional object onto a lower-dimensional space. By using sophisticated signal-processing techniques, many such limited images of a common object can be combined to construct a single enhanced image.

Techniques for combining multiple one-dimensional projections into a single two-dimensional image are known collectively as tomography (Greek toma: a cut + graphy). The term may also be used to describe techniques for combining several poor images into a single improved image. This is different from the practice of enhancing a single image by signal-processing techniques, although, of course, the two tasks are closely related.

The most widespread form of tomography, known as projection tomography, reconstructs an image from its projections. Projection tomography has a simple mathematical structure. The most familiar instance of projection tomography uses X-rays as the source of illumination and X-ray absorption as the observed phenomenon. In this case, the way the X-ray illumination is used is quite different from the case of molecular imaging where the observation in the far field is based on scattering of the illuminating X-rays. In projection tomography, the observation is based on attenuation of the illuminating rays in the geometrical-optics approximation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tomography
  • Richard E. Blahut, University of Illinois, Urbana-Champaign
  • Book: Theory of Remote Image Formation
  • Online publication: 19 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543418.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tomography
  • Richard E. Blahut, University of Illinois, Urbana-Champaign
  • Book: Theory of Remote Image Formation
  • Online publication: 19 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543418.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tomography
  • Richard E. Blahut, University of Illinois, Urbana-Champaign
  • Book: Theory of Remote Image Formation
  • Online publication: 19 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543418.011
Available formats
×