Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-13T01:27:15.049Z Has data issue: false hasContentIssue false

9 - Quantum transformation experiments

Published online by Cambridge University Press:  04 August 2010

Bruce R. Wheaton
Affiliation:
University of California, Berkeley
Get access

Summary

Where does the ejected electron get its kinetic energy when its separation from the light source becomes so great that the light intensity almost completely vanishes?

The same x-ray spectroscopic techniques that led to the identification of the atomic origin of x-ray spectra also offered means to test the localization of energy in the radiation. In the second decade of this century, x-ray spectrometers used as monochromatizers provided more purely defined x-rays than had been available from natural characteristic radiation. This, coupled with techniques to determine the kinetic energy of secondary electrons, provided opportunities for precise testing of the quantum transformation relation, E = hv. These experiments form the subject of this chapter.

We are primarily concerned here with the absorption of radiation, not with its emission. To be sure, the quantum regulation of the emission of radiant energy has no classical explanation; yet there is no electromechanical inconsistency implied in the creation of a spherical wave containing a definite amount of energy. It is the inverse case that causes real difficulty. How can that quantum of spherically radiating energy concentrate its full power on a single electron? For this reason, verification of the quantum relationship for emitted radiation lies outside our direct concerns. The Franck-Hertz experiments beginning in 1912, for example, demonstrated the quantum nature of energy transfer, but they did little to encourage acceptance or even consideration of the lightquantum. On the other hand, the experiments detailed here that verified the quantum nature of the absorption of light and x-rays gave substance to the lightquantum hypothesis because they verified the particlelike transfer of radiant energy to matter.

Type
Chapter
Information
The Tiger and the Shark
Empirical Roots of Wave-Particle Dualism
, pp. 233 - 260
Publisher: Cambridge University Press
Print publication year: 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×