Published online by Cambridge University Press: 28 October 2009
In the literature on model specification testing two trends can be distinguished. One trend consists of tests using one or more well-specified non-nested alternative specifications. See Cox (1961, 1962), Atkinson (1969, 1970), Quandt (1974), Pereira (1977, 1978), Pesaran and Deaton (1978), Davidson and MacKinnon (1981), among others. The other trend consists of tests of the orthogonality condition, i.e. the condition that the conditional expectation of the error relative to the regressors equals zero a.s., without employing a well-specified alternative. Notable work on this problem has been done by Ramsey (1969, 1970), Hausman (1978), White (1981), Holly (1982), Bierens (1982, 1991a), Newey (1985), and Tauchen (1985), among others.
A pair of models is called non-nested if it is not possible to construct one model out of the other by fixing some parameters. The non-nested models considered in the literature usually have different vectors of regressors, for testing non-nested models with common regressors makes no sense. In the latter case one may simply choose the model with the minimum estimated error variance, and this choice will be consistent in the sense that the probability that we pick the wrong model converges to zero. A serious point overlooked by virtually all authors is that nonnested models with different sets of regressors may all be correct. This is obvious if the dependent variable and all the regressors involved are jointly normally distributed and the non-nested models are all linear, for conditional expectations on the basis of jointly normally distributed random variables are always linear functions of the conditioning variables.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.