Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T01:37:15.668Z Has data issue: false hasContentIssue false

Chapter Fifteen - Consequences of trait evolution in a multispecies system

Published online by Cambridge University Press:  05 February 2013

Craig W. Benkman
Affiliation:
Department of Zoology and Physiology, University of Wyoming
Adam M. Siepielski
Affiliation:
Department of Biology, University of San Diego
Julie W. Smith
Affiliation:
Department of Biology, Pacific Lutheran University
Takayuki Ohgushi
Affiliation:
Kyoto University, Japan
Oswald Schmitz
Affiliation:
Yale University, Connecticut
Robert D. Holt
Affiliation:
University of Florida
Get access

Summary

Introduction

Ecologists interested in how traits mediating species interactions evolve have increasingly recognized that trait evolution is a consequence of multiple interacting species (Miller and Travis 1996; Strauss and Ambruster 1997; Thompson 1999; Strauss and Irwin 2004; Haloin and Strauss 2008). Species may alter the evolution of traits affecting multiple species through a number of direct or indirect pathways; examples include exerting conflicting selection pressures on the same traits (Siepielski and Benkman 2007a; Manzaneda et al. 2009) and predators indirectly altering the strength of species interactions (Werner and Peacor 2003). Although our understanding of the community context of species interactions has sharpened in the past decade (e.g., Strauss and Irwin 2004; Bascompte and Jordano 2007; Johnson and Stinchcombe 2007), particularly with regards to spatial dynamics (e.g., Thompson 2005; Urban et al. 2008), a number of outstanding questions remain. For example, to what extent do interactions evolve because of adaptive evolution of traits mediating other species interactions? Similarly, how does the loss of an interacting species (e.g., relaxed selection) affect the evolution of other interactions? Finally, when and to what extent is variation in community and ecosystem patterns and processes influenced by adaptive evolution of traits mediating species interactions? Answers to these questions have important implications for our understanding of major topics in evolutionary biology including the evolutionary outcome of selection in multispecies interactions, the geographic mosaic of coevolution and even patterns of adaptive radiation.

Type
Chapter
Information
Trait-Mediated Indirect Interactions
Ecological and Evolutionary Perspectives
, pp. 278 - 292
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, W. S.Howard, J. J.Clausen, T. P. 1997 Do biochemical exaptations link evolution of plant defense and pollination systems? Historical hypotheses and experimental tests with vinesAmerican Naturalist 149 461CrossRefGoogle Scholar
Armbruster, W. S.Lee, J.Baldwin, B. G. 2009 Macroevolutionary patterns of defense and pollination in vines: adaptation, exaptation, and evolutionary noveltyProceedings of the National Academy of Sciences of the United States of America 106 18085CrossRefGoogle ScholarPubMed
Bascompte, J.Jordano, P. 2007 The structure of plant–animal mutualistic networks: the architecture of biodiversityAnnual Review of Ecology, Evolution, and Systematics 38 567CrossRefGoogle Scholar
Bailey, J. K.Schweitzer, J. A.Rehill, B. J. 2004 Beavers as molecular geneticists: a genetic basis to the foraging of an ecosystem engineerEcology 85 603CrossRefGoogle Scholar
Bailey, J. K.Schweitzer, J. A.Koricheva, J. 2009 From genes to ecosystems: synthesizing the effects of plant genetic factors across systemsPhilosophical Transactions of the Royal Society of London, Series B 364 1607CrossRefGoogle Scholar
Barbour, M. G.Burk, J. H.Pitts, W. D. 1987 Terrestrial Plant EcologyMenlo Park, CABenjamin-Cummings Publishing CompanyGoogle Scholar
Bassar, R. D.Marshall, M. C.López-Sepulcre, A. 2010 Local adaptation in Trinidadian guppies alters ecosystem processesProceedings of the National Academy of Sciences of the United States of America 107 3616CrossRefGoogle ScholarPubMed
Baumeister, D.Callaway, R. M. 2006 Facilitative effects of during succession: a hierarchy of mechanisms benefits other plant speciesEcology 87 1816CrossRefGoogle ScholarPubMed
Benkman, C. W. 1995 Wind dispersal capacity of pine seeds and the evolution of different seed dispersal modes in pinesOikos 73 221CrossRefGoogle Scholar
Benkman, C. W. 1999 The selection mosaic and diversifying coevolution between crossbills and lodgepole pineAmerican Naturalist 154 S75CrossRefGoogle Scholar
Benkman, C. W.Siepielski, A. M. 2004 A keystone selective agent? Pine squirrels and the frequency of serotiny in lodgepole pineEcology 85 2082CrossRefGoogle Scholar
Benkman, C. W.Holimon, W. C.Smith, J. W. 2001 The influence of a competitor on the geographic mosaic of coevolution between crossbills and lodgepole pineEvolution 55 282CrossRefGoogle ScholarPubMed
Benkman, C. W.Parchman, T. L.Mezquida, E. T. 2010 Patterns of coevolution in the adaptive radiation of crossbillsAnnals of the New York Academy of Sciences 1206 1CrossRefGoogle ScholarPubMed
Benkman, C. W.Siepielski, A. M.Parchman, T. L. 2008 The local introduction of strongly interacting species and the loss of geographic variation in species and species interactionsMolecular Ecology 17 395CrossRefGoogle ScholarPubMed
Benkman, C. W.Smith, J. W.Maier, M.
Carpenter, S. R.Kitchell, J. F.Hodgson, J. R. 1985 Cascading trophic interactions and lake productivityBioScience 35 634CrossRefGoogle Scholar
Clark, C. J.Poulsen, J. R.Levey, D. J.Osenberg, C. W. 2007 Are plant populations seed limited? A critique and meta-analysis of seed addition experimentsAmerican Naturalist 170 128Google ScholarPubMed
Elliott, P. F. 1988 Foraging behavior of a central-place forager: field tests of theoretical predictionsAmerican Naturalist 131 159CrossRefGoogle Scholar
Enright, N. J.Marsula, R.Lamont, B. B.Wissel, C 1998 The ecological significance of canopy seed storage in fire-prone environments: a model for non-sprouting shrubsJournal of Ecology 86 946CrossRefGoogle Scholar
Estes, J. A.Duggins, D. O. 1995 Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigmEcological Monographs 65 75CrossRefGoogle Scholar
Harmon, L. J.Matthews, B.DesRoches, S. 2009 Evolutionary diversification in stickleback affects ecosystem functioningNature 458 1167CrossRefGoogle ScholarPubMed
Haloin, J. R.Strauss, S. Y. 2008 Interplay between ecological communities and evolution: review of feedbacks from microevolutionary to macroevolutionary scalesAnnals of the New York Academy of Sciences 1133 87CrossRefGoogle ScholarPubMed
Herrera, C. M. 2002 Seed dispersal by vertebratesHerrera, C. M.Pellmyr, O.Plant–Animal Interactions: An Evolutionary ApproachNew YorkBlackwell Scientific Publications185Google Scholar
Holt, R. D. 1994 Linking species and ecosystems: where’s DarwinJones, C.Lawton, J.Linking Species and EcosystemsLondonChapman and Hall273Google Scholar
Hulme, P.Benkman, C. W. 2002 GranivoryHerrera, C. M.Pellmyr, O.Plant–Animal Interactions: An Evolutionary ApproachNew YorkBlackwell Scientific Publications132Google Scholar
Johnson, M. T. J.Stinchcombe, J. R. 2007 An emerging synthesis between community ecology and evolutionary biologyTrends in Ecology and Evolution 22 250CrossRefGoogle ScholarPubMed
Khalil, M. A. K. 1984 Genetics of cone morphology of black spruce ( Mill, B. S. P.) in Newfoundland, CanadaSilvae Genetica 33 101Google Scholar
Lamont, B. B.Le Maitre, D. C.Cowling, R. M.Enright, N. J. 1991 Canopy seed storage in woody plantsThe Botanical Review 57 277CrossRefGoogle Scholar
Manzaneda, A. J.Rey, P. J.Alcántara, J. M. 2009 Conflicting selection on diaspore traits limits the evolutionary potential of seed dispersal by antsJournal of Evolutionary Biology 22 1407CrossRefGoogle ScholarPubMed
Matziris, D. 1998 Genetic variation in cone and seed characteristics in a clonal seed orchard of Aleppo pine grown in GreeceSilvae Genetica 47 37Google Scholar
Mezquida, E. T.Benkman, C. W. 2005 The geographic selection mosaic for squirrels, crossbills and Aleppo pineJournal of Evolutionary Biology 18 348CrossRefGoogle ScholarPubMed
Miller, G. E. 1986 Insects and conifer seed production in the Inland Mountain West: a reviewShearer, R. C.Proceedings: Conifer Tree Seed in the Inland Mountain West SymposiumOgdenUT: US Department of Agriculture, Forest Service,225Google Scholar
Miller, T. E.Travis, J. 1996 The evolutionary role of indirect effects in communitiesEcology 77 1329CrossRefGoogle Scholar
Palkovacs, E. P.Marshall, M. C.Lamphere, B. A. 2009 Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streamsPhilosophical Transactions of the Royal Society of London, Series B 364 1617CrossRefGoogle ScholarPubMed
Parchman, T. L.Benkman, C. W. 2008 The geographic selection mosaic for ponderosa pine and crossbills: a tale of two squirrelsEvolution 62 348CrossRefGoogle ScholarPubMed
Pellmyr, O. 2002 Pollination by animalsHerrera, C. M.Pellmyr, O.Plant–Animal Interactions: An Evolutionary ApproachNew YorkBlackwell Scientific Publications157Google Scholar
Reich, P. B.Hobbie, S. E.Lee, T. 2006 Nitrogen limitation constrains sustainability of ecosystem response to CO2Nature 440 922CrossRefGoogle Scholar
Reznick, D.Butler IV, M. J.Rodd, H. 2001 Life history evolution in guppies. VII. The comparative ecology of high- and low-predation environmentsAmerican Naturalist 157 126Google ScholarPubMed
Siepielski, A. M.Benkman, C. W. 2004 Interactions among moths, crossbills, squirrels, and lodgepole pine in a geographic selection mosaicEvolution 58 95CrossRefGoogle Scholar
Siepielski, A. M.Benkman, C. W. 2005 A role for habitat area in the geographic mosaic of coevolution between red crossbills and lodgepole pineJournal of Evolutionary Biology 18 1042CrossRefGoogle ScholarPubMed
Siepielski, A. M.Benkman, C. W. 2007 Convergent patterns in the selection mosaic for two North American bird-dispersed pinesEcological Monographs 77 203CrossRefGoogle Scholar
Siepielski, A. M.Benkman, C. W. 2007 Selection by a pre-dispersal seed predator constrains the evolution of avian seed dispersal in pinesFunctional Ecology 21 611CrossRefGoogle Scholar
Siepielski, A. M.Benkman, C. W. 2008 Seed predation and selection exerted by a seed predator influence subalpine tree densitiesEcology 89 2960CrossRefGoogle ScholarPubMed
Siepielski, A. M.Benkman, C. W. 2008 A seed predator drives the evolution of a seed dispersal mutualismProceedings of the Royal Society of London, Series B 275 1917CrossRefGoogle ScholarPubMed
Smith, C. C. 1970 The coevolution of pine squirrels () and conifersEcological Monographs 40 349CrossRefGoogle Scholar
Smith, C. C.Balda, R. P. 1979 Competition among insects, birds and mammals for conifer seedsAmerican Zoologist 19 1065CrossRefGoogle Scholar
Strauss, S. Y.Armbruster, W. S. 1997 Linking herbivory and pollination: new perspectives on plant and animal ecology and evolutionEcology 78 1617Google Scholar
Strauss, S. Y.Irwin, R. E. 2004 Ecological and evolutionary consequences of multispecies plant–animal interactionsAnnual Review of Ecology, Evolution, and Systematics 35 435CrossRefGoogle Scholar
Summers, R. W.Proctor, R. 1999 Tree and cone selection by crossbills sp. and red squirrels at Abernethy forest, StrathspeyForest Ecology and Management 118 173CrossRefGoogle Scholar
Thompson, J. N. 1999 Specific hypotheses on the geographic mosaic of coevolutionAmerican Naturalist 153 S1CrossRefGoogle Scholar
Thompson, J. N. 2005 The Geographic Mosaic of CoevolutionChicago, ILUniversity of Chicago PressGoogle Scholar
Tinker, D. B.Romme, W. H.Hargrove, W. W.Gardner, R. H.Turner, M. G. 1994 Landscale-scape heterogeneity in lodgepole pine serotinyCanadian Journal of Forest Research 24 897CrossRefGoogle Scholar
Tomback, D. F.Kendall, K. C. 2001 Biodiversity losses: the downward spiralTomback, D. F.Arno, S. F.Keane, R. E.Whitebark Pine Communities: Ecology and RestorationWashington DCIsland Press243Google Scholar
Tomback, D. F.Linhart, Y. B. 1990 The evolution of bird-dispersed pinesEvolutionary Ecology 4 185CrossRefGoogle Scholar
Tomback, D. F.Arno, S. F.Keane, R. E. 2001 The compelling case for management interventionTomback, D. F.Arno, S. F.Keane, R. E.Whitebark Pine Communities: Ecology and RestorationWashington DCIsland Press3Google Scholar
Turner, M. G.Romme, W. H.Gardner, R. H.Hargrove, W. W. 1997 Effects of fire size and pattern on early succession in Yellowstone National ParkEcological Monographs 67 411CrossRefGoogle Scholar
Urban, M. C.Leibold, M. A.Amarasekare, P. 2008 The evolutionary ecology of metacommunitiesTrends in Ecology and Evolution 23 311CrossRefGoogle ScholarPubMed
Vander Wall, S. B. 2008 On the relative contributions of wind vs. animals to seed dispersal of four Sierra Nevada pinesEcology 89 1837Google ScholarPubMed
Waring, G. L.Cobb, N. S. 1992 The impact of plant stress on herbivore population dynamicsBernays, E. A.Insect-Plant Interactions 4 Boca Raton, FLCRC Press167Google Scholar
Werner, E. E.Peacor, S. D. 2003 A review of trait-mediated indirect interactions in ecological communitiesEcology 84 1083CrossRefGoogle Scholar
Whitham, T. G.Bailey, J. K.Schweitzer, J. A. 2006 A framework for community and ecosystem genetics: from genes to ecosystemsNature Reviews Genetics 7 510CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×