Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Print publication year: 2015
  • Online publication date: May 2015

3 - Top-down and bottom-up interactions in freshwater ecosystems: emerging complexities

from Part II - Ecosystems

Summary

Introduction

Lindeman (1942) made early distinctions between aquatic food webs and Elton's (1927) terrestrial biomass pyramids that firmly established the study of lakes and rivers as fertile ecosystems for examining the relative roles of resources and consumers in controlling energy flow and biomass. Building on these early observations, ecologists have established that energy transfers more efficiently through freshwater food webs than terrestrial food webs as a result of higher consumer-producer size ratios, higher producer growth rates and population turnover, and lower consumer-resource elemental imbalances, as compared to terrestrial systems (Shurin et al., 2006). Freshwater ecologists have confirmed the importance of nutrients in limiting primary production and the rapid transfer of energy to herbivores, thereby establishing the important role of bottom-up processes in regulating freshwater food webs (McQueen et al., 1986; Power, 1992). Freshwater ecologists have also recognized the role of top-down processes in freshwater ecosystems, and contributed substantially to demonstrating that higher trophic levels can influence primary producer biomass through trophic cascades (Carpenter et al., 1985; Power, 1992; Pace et al., 1999).

Clearly, both “top-down” (TD) and “bottom-up” (BU) regulation are pervasive in freshwater food webs (Shurin et al., 2006; Gruner et al., 2008), and these two processes do not act independently. For example, increasing nutrients can intensify consumer control and the effects of trophic cascades on producer communities (Carpenter et al., 2001; Jeppesen et al., 2003), and increase overall contribution of animal-mediated nutrient recycling to ecosystem demand (Vanni et al., 2006; Wilson and Xenopoulos, 2011). Understanding mechanisms that facilitate interactions between resource and consumer control of food web structure is an important avenue of research. Moreover, the importance of BU and TD interactions also pervades applied aspects of ecology, including water quality management and biodiversity conservation. For example, BU and TD interactions are beginning to help conservationists predict consequences of changing species composition on ecosystem function (Eby et al., 2006; McIntyre et al., 2007; Vaughn, 2010).

Allan, J. D., Abell, R., Hogan, Z., et al. (2005). Overfishing of inland waters. Bioscience, 55, 1041–1051.
Allen, A. P. and Gillooly, J. F. (2009). Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters, 12, 369–384.
Allen, D. C. and Vaughn, C. C. (2011). Density-dependent biodiversity effects on physical habitat modification by freshwater bivalves. Ecology, 92, 1013–1019.
Arango, C. P., Riley, L. A., Tank, J. L. and Hall, R. O. Jr. (2009). Herbivory by an invasive snail increases nitrogen fixation in a nitrogen-limited stream. Canadian Journal of Fisheries and Aquatic Sciences, 66, 1309–1317.
Atkinson, C. L., Vaughn, C. C., Forshay, K. J. and Cooper, J. T. (2013). Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology, 94, 1359–1369.
Bartell, S. M. (1981). Potential impact of size-selective planktivory on phosphorus release by zooplankton. Hydrobiologia, 80, 139–145.
Baxter, C. V., Fausch, K. D., Murakami, M. and Chapman, P. L. (2004). Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology, 85, 2656–2663.
Bayley, P. B. (1995). Understanding large river floodplain ecosystems. Bioscience, 45, 153–158.
Benjamin, J. R., Fausch, K. D. and Baxter, C. V. (2011). Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders. Oecologia, 167, 503–512.
Benstead, J. P., Cross, W. F., March, J. G., et al. (2010). Biotic and abiotic controls on the ecosystem significance of consumer excretion in two contrasting tropical streams. Freshwater Biology, 55, 2047–2061.
Boersma, M., Aberle, N., Hantzsche, F. M., et al. (2008). Nutritional limitation travels up the food chain. International Review of Hydrobiology, 93, 479–488.
Borer, E. T., Halpern, B. S. and Seabloom, E. W. (2006). Asymmetry in community regulation: effects of predators and productivity. Ecology, 87, 2813–2820.
Brett, M. T. and Goldman, C. R. (1996). A meta-analysis of the freshwater tropic cascade. Proceedings of the National Academy of Sciences of the USA, 93, 7723–7726.
Brett, M. T. and Goldman, C. R. (1997). Consumer versus resource control in freshwater pelagic food webs. Science, 275, 384–386.
Brett, M. T., Muller-Navarra, D. C. and Park, S.-K. (2000). Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnology and Oceanography, 45, 1564–1575.
Capps, K. A. and Flecker, A. S. (2013). Invasive aquarium fish transform ecosystem nutrient dynamics. Proceedings of the Royal Society B, 280, 20131520.
Carlsson, N. O. L., Brönmark, C. and Hansson, L.-A. (2004). Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology, 85, 1575–1580.
Carpenter, S. R., Kitchell, J. F. and Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. Bioscience, 35, 634–639.
Carpenter, S. R., Caraco, N. F., Correl, D. L., et al. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.
Carpenter, S. R., Cole, J. J., Hodgson, J. R., et al. (2001). Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs, 71, 163–186.
Carpenter, S. R., Cole, J. J., Pace, M. L., et al. (2005). Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology, 86, 2737–2750.
Carpenter, S. R., Cole, J. J., Kitchell, J. F. and Pace, M. L. (2010). Trophic cascades in lakes: lessons and prospects. In Trophic Cascades: Predators, Prey, and Changing Dynamics of Nature, ed. Terborgh, J. and Estes, J. A.. Washington, DC: Island Press, pp. 55–69.
Catalano, M. J. and Allen, M. S. (2010). A whole-lake density reduction to assess compensatory responses of gizzard shad Dorosoma cepedianum. Canadian Journal of Fisheries and Aquatic Sciences, 68, 955–968.
Catalano, M. J., Allen, M. S., Schaus, M. H., Buck, D. G. and Beaver, J. R. (2010). Evaluating short-term effects of omnivorous fish removal on water quality and zooplankton at a subtropical lake. Hydrobiologia, 655, 159–169.
Cebrian, J. (1999). Patterns in the fate of production in plant communities. American Naturalist, 154, 449–468.
Cebrian, J. and Lartigue, J. (2004). Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs, 74, 237–259.
Conley, D. J., Paerl, H. W., Howarth, R. W., et al. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.
Creed, R. P. Jr. and Reed, J. M. (2004). Ecosystem engineering by crayfish in a headwater stream community. Journal of the North American Benthological Society, 23, 224–236.
Cross, W. F., Wallace, J. B., Rosemond, A. D. and Eggert, S. L. (2006). Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology, 87, 1556–1565.
Danger, M., Funck, J. A., Devin, S., Heberle, J. and Felten, V. (2013). Phosphorus content in detritus controls life-history traits of a detritivore. Functional Ecology, 27, 807–815.
Dickman, E. M., Vanni, M. J. and Horgan, M. J. (2006). Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia, 149, 676–689.
Dickman, E. M., Newell, J. M., González, M. J. and Vanni, M. J. (2008). Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Sciences of the USA, 105, 18408–18412.
Dillon, P. J. and Rigler, F. H. (1976). The phosphorus-chlorophyll relationship in lakes. Limnology and Oceanography, 19, 767–773.
Dodds, W. K., Smith, V. H. and Lohman, K. (2002). Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Sciences, 59, 865–874.
Domis, L. N. D., Elser, J. J., Gsell, A. S., et al. (2013). Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 58, 463–482.
Downing, J. A., Plante, C. and Lalonde, S. (1990). Fish production correlated with primary productivity, not the morphoedaphic index. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1929–1936.
Downing, J. A., Watson, S. B. and McCauley, E. (2001). Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1905–1908.
Dugdale, R. C. and Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196–206.
Eby, L. A., Roach, W. J., Crowder, L. B. and Stanford, J. A. (2006). Effects of stocking-up freshwater food webs. Trends in Ecology and Evolution, 21, 576–584.
Elser, J. J. and Urabe, J. (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80, 735–751.
Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al. (2007). Global analysis of nitrogen and phosphorus limitiation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.
Elton, C. (1927). Animal Ecology. London, UK: Sidgwick and Jackson.
Epanchin, P., Knapp, R. and Lawler, S. (2010). Nonnative trout impact an alpine-nesting bird by altering aquatic insect subsidies. Ecology, 91, 2406–2415.
Finlay, J. C. and Vredenburg, V. T. (2007). Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian. Ecology, 88, 2187–2197.
Fittkau, E. J. (1970). Role of caimans in the nutrient regime of mouthlakes of Amazon affluents (a hypothesis). Biotropica, 2, 138–142.
Flecker, A. S. (1996). Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology, 77, 1845–1854.
Flecker, A. S. and Taylor, B. W. (2004). Tropical fishes as biological bulldozers: density effects on spatial heterogeneity and species diversity. Ecology, 85, 2267–2278.
Flecker, A. S. and Townsend, C. R. (1994). Community-wide consequences of trout introduction in New Zealand streams. Ecological Applications, 4, 798–807.
Flecker, A. S., Feifarek, B. P. and Taylor, B. W. (1999). Ecosystem engineering by a tropical tadpole: density-dependent effects on habitat structure and larval growth rates. Copeia, 1999, 495–500.
Flecker, A. S., Taylor, B. W., Bernhardt, E. S., et al. (2002). Interactions between herbivorous fishes and limiting nutrients in a tropical stream ecosystem. Ecology, 83, 1831–1844.
Flecker, A. S., McIntyre, P. B., Moore, J. W., et al. (2010). Migratory fishes as material and process subsidies in riverine ecosystems. In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques, ed. Gido, K. B. and Jackson, D. A.. Bethesda, MD: American Fisheries Society, Symposium 73, pp. 559–592.
Forrester, G. E., Dudley, T. L. and Grimm, N. B. (1999). Trophic interactions in open systems: effects of predators and nutrients on stream food chains. Limnology and Oceanography, 44, 1187–1197.
Francoeur, S. N. (2001). Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society, 20, 358–368.
Frost, P. C. and Elser, J. J. (2002). Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 5, 232–240.
Gelwick, F. P. and Matthews, W. J. (1992). Effects of an algivorous minnow on temperate stream ecosystem properties. Ecology, 73, 1630–1645.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.
Glass, J. B., Axler, R. P., Chandra, S. and Goldman, C. R. (2012). Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology, 3, 331.
Gottesfeld, A. S., Hassan, M. A., Tunnicliffe, J. F. and Poirier, R. W. (2004). Sediment dispersion in salmon spawning streams: the influence of floods and salmon redd construction. Journal of American Water Resources Association, 40, 1071–1086.
Grimm, N. B. (1988a). Feeding dynamics, nitrogen budgets, and ecosystem role of a desert stream omnivore, Agosia chrysogaster (Pisces, Cyprinidae). Environmental Biology of Fishes, 21, 143–152.
Grimm, N. B. (1988b). Role of macroinvertebrates in nitrogen dynamics of a desert stream. Ecology, 69, 1884–1893.
Gruner, D. S., Smith, J. E., Seabloom, E. W., et al. (2008). A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters, 11, 740–755.
Gulis, V. and Suberkropp, K. (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 48, 123–134.
Gulis, V., Rosemond, A. D., Suberkropp, K., Weyers, H. S. and Benstead, J. P. (2004). Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshwater Biology, 49, 1437–1447.
Hairston, N. G., Smith, F. E. and Slobodkin, L. B. (1960). Community structure, population control, and competition. The American Naturalist, 94, 421–425.
Hall, R. O. Jr., Tank, J. L. and Dybdahl, M. F. (2003). Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and Environment, 1, 407–411.
Hall, R. O. Jr., Taylor, B. W. and Flecker, A. S. (2011). Detritivorous fish indirectly reduce insect secondary production in a tropical river. Ecosphere, 2, 135. DOI: 10.1890/ES11–00042.1
Hall, S. R., Leibold, M. A., Lytle, D. A. and Smith, V. H. (2007). Grazers, producer stoichiometry, and the light: nutrient hypothesis revisited. Ecology, 88, 1142–1152.
Hambright, K. D., Drenner, R. W., McComas, S. R. and Hairston, N. G. (1991). Gape-limited piscivores, planktivore size refuges, and the trophic cascade hypothesis. Archiv Fur Hydrobiologie, 121, 389–404.
Hambright, K. D., Zohary, T. and Gude, H. (2007). Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography, 52, 1018–1025.
Hansson, L.-A., Annadotter, H., Bergman, E., et al. (1998). Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosytems, 1, 558–574.
Hargrave, C. W., Ramírez, R., Brooks, M., et al. (2006). Indirect food web interactions increase growth of an algivorous stream fish. Freshwater Biology, 51, 1901–1910.
Hassan, M. A., Gottesfeld, A. S., Montgomery, D. R., et al. (2008). Salmon-driven bed load transport and bed morphology in mountain streams. Geophysical Research Letters, 35, L04405.
Havens, K. E., James, R. T., East, T. L. and Smith, V. H. (2003). N : P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 122, 379–390.
Hill, W. R., Smith, J. G. and Stewart, A. J.. (2010). Light, nutrients, and herbivore growth in oligotrophic streams. Ecology, 91, 518–2750.
Hillebrand, H. (2002). Top-down versus bottom-up control of autotrophic biomass: a meta-analysis on experiments with periphyton. Journal of the North American Benthological Society, 21, 349–369.
Hillebrand, H., de Montpellier, G. and Liess, A. (2004). Effects of macrograzers and light on periphyton stoichiometry. Oikos, 106(1), 93–104.
Hood, J. M., Vanni, M. J. and Flecker, A. S. (2005). Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia, 146, 247–257.
Hooper, D. U., Chapin, F. S., Ewel, J. J., et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3–35.
Horppila, J., Peltonen, H., Malinen, T., Luokkanen, E. and Kairesalo, T. (1998). Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology, 6, 20–28.
Huryn, A. D. (1998). Ecosystem-level evidence for top-down and bottom-up control of production in a grassland stream system. Oecologia, 115, 173–183.
Hynes, H. B. N. (1975). The stream and its valley. Proceedings of the International Association of Theoretical and Applied Limnology, 19, 1–16.
Jeppesen, E., Jensen, J. P., Jensen, C., et al. (2003). The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the Arctic. Ecosystems, 6, 313–325.
Jeppesen, E., Jensen, J. P., Søndergaard, M. and Jauridsen, T. L. (2005). Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology, 50, 1616–1627.
Jeppesen, E., Meerhoff, M., Jacobsen, B. A., et al. (2007). Restoration of shallow lakes by nutrient control and biomanipulation: the successful strategy varies with lake size and climate. Hydrobiologia, 581, 269–285.
Johnson, B. R. and Wallace, J. B. (2005). Bottom-up limitation of a stream salamander in a detritus-based food web. Canadian Journal of Fisheries and Aquatic Sciences, 62, 301–311.
Johnson, C. R., Luecke, C., Whalen, S. C. and Evans, M. A. (2010). Direct and indirect effects of fish on pelagic nitrogen and phosphorus availability in oligotrophic Arctic Alaskan lakes. Canadian Journal of Fisheries and Aquatic Sciences, 67, 1635–1648.
Johnson, P. T. J., Olden, J. D., Solomon, C. T. and Vander Zanden, M. J. (2009). Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia, 159, 161–170.
Jones, C. G., Lawton, J. H. and Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.
Junk, W., Bayley, P. and Sparks, R. (1989). The flood-pulse concept in river-floodplains systems. In Proceedings of the International Large River Symposium, ed. Dodge, D.. Canada: Canadian Special Publication of Fisheries and Aquatic Sciences, pp. 110–127.
Kishi, D., Murakami, M., Nakano, S. and Maekawa, K. (2005). Water temperature determines strength of top-down control in a stream food web. Freshwater Biology, 50, 1315–1322.
Klausmeier, C. A., Litchman, E., Daufresne, T. and Levin, S. A. (2004). Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 429, 171–174.
Knoll, L. B., McIntyre, P. B., Vanni, M. J. and Flecker, A. S. (2009). Feedbacks of consumer nutrient recycling on producer biomass and stoichiometry: separating direct and indirect effects. Oikos, 118, 1732–1742.
Kurle, C. M. and Cardinale, B. J. (2011). Ecological factors associated with the strength of trophic cascades in streams. Oikos, 120, 1897–1908.
Leibold, M. A. (1989). Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. The American Naturalist, 134, 922–949.
Leroux, S. J. and Loreau, M. (2008). Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters, 11, 1147–1156.
Lewis, W. M. Jr. and Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiologia, 93, 446–465.
Liess, A. and Kahlert, M. (2007). Gastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity. Oecologia, 152, 101–111.
Liess, A. and Lange, K. (2011). The snail Potamopyrgus antipodarum grows faster and is more active in the shade, independent of food quality. Oecologia, 167(1), 85–96.
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–417.
Locke, M. A., Knight, S. S., Smith, S. Jr., et al. (2008). Environmental quality research in the Beasley Lake watershed, 1995–2007: succession from conventional to conservation practices. Journal of Soil and Water Conservation, 63, 430–442.
MacKay, N. A. and Elser, J. J. (1998). Nutrient recycling by Daphnia reduces N-2 fixation by cyanobacteria. Limnology and Oceanography, 43, 347–354.
Malzahn, A. M., Aberle, N., Clemmesen, C. and Boersma, M. (2007). Nutrient limitation of primary producers affects planktivorous fish condition. Limnology and Oceanography, 52, 2062–2071.
Malzahn, A. M., Hantzsche, F., Schoo, K. L., Boersma, M. and Aberle, N. (2010). Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia, 162, 35–48.
Matthews, W. J. (1998). Patterns in Freshwater Fish Ecology. New York: Chapman & Hall.
McIntyre, P. B., Jones, L. E., Flecker, A. S. and Vanni, M. J. (2007). Fish extinctions alter nutrient recycling in tropical freshwaters. Proceedings of the National Academy of Sciences of the USA, 104, 4461–4466.
McIntyre, P. B., Flecker, A. S., Vanni, M. J., et al. (2008). Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology, 89, 2335–2346.
McManamay, R. A., Webster, J. R., Valett, H. M. and Dolloff, C. A. (2011). Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. Journal of the North American Benthological Society, 30, 84–102.
McQueen, D. J., Post, J. R. and Mills, E. L. (1986). Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1571–1581.
Mette, E. M., Vanni, M. J., Newell, J. M. and Gonzalez, M. J. (2011). Phytoplankton communities and stoichiometry are interactively affected by light, nutrients, and fish. Limnology and Oceanography, 56, 1959–1975.
Meyer, J. L. and Wallace, J. B. (2001). Lost linkages and lotic ecology: rediscovering small streams. In Ecology: Achievement and Challenge, ed. Press, M., Huntly, N. and Levin, S.. Oxford, UK: Blackwell Science, pp. 295–317.
Mills, K. H. and Chalanchuk, S. M. (1987). Population-dynamics of lake whitefish (Coregonus clupeaformis) during and after the fertilization of Lake 226, The Experimental Lakes Area. Canadian Journal of Fisheries and Aquatic Sciences, 44 (supplement 1), 55–63.
Moore, J. W. (2006). Animal ecosystem engineers in streams. BioScience, 56, 237–246.
Moore, J. W. and Schindler, D. E. (2008). Biotic disturbance and benthic community dynamics in salmon-bearing streams. Journal of Animal Ecology, 77, 275–284.
Moslemi, J. M., Snider, S. B., MacNeill, K., Gilliam, J. F. and Flecker, A. S. (2012). Impacts of an invasive snail (Tarebia granifera) on nutrient cycling in tropical streams: the role of riparian deforestation in Trinidad, West Indies. PLos One, 7, e38806.
Naiman, R. J., Melillo, J. M. and Hobbie, J. E. (1986). Ecosystem alteration of boreal forest streams by beaver (Castor canadensis). Ecology, 67, 1254–1269.
Naiman, R. J., Bilby, R. E., Schindler, D. E. and Helfield, J. M. (2002). Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems, 5, 399–417.
Naiman, R. J., Helfield, J. M., Bartz, K. K., Drake, D. C. and Honea, J. M. (2009). Pacific salmon, marine-derived nutrients, and the characteristics of aquatic and riparian ecosystems. American Fisheries Society Symposium, 69, 395–425.
Nakano, S., Miyasaka, H. and Kuhara, N. (1999). Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435–2441.
Pace, M. L., Cole, J. J., Carpenter, S. R. and Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483–488.
Pace, M. L., Cole, J. J., Carpenter, S. R., et al. (2004). Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427, 240–243.
Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure. The Journal of Animal Ecology, 49, 666–685.
Peckarsky, B. L., McIntosh, A. R., Álvarez, M. and Moslemi, J. M. (2013). Nutrient limitation controls the strength of behavioral trophic cascades in high elevation streams. Ecosphere, 4, 110.
Peterson, B., Fry, B., Deegan, L. and Hershey, A. (1993). The trophic significance of epilithic algal production in a fertilized tundra river ecosystem. Limnology and Oceanography, 38, 872–878.
Peterson, D. P. and Foote, C. J. (2000). Disturbance of small-stream habitat by spawning sockeye salmon in Alaska. Transactions of the American Fisheries Society, 129, 924–934.
Polis, G. A., Anderson, W. B. and Holt, R. D. (1997). Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.
Pollock, M. M., Heim, M. and Naiman, R. J. (2003). Hydrologic and geomorphic effects of beaver dams and their influence on fishes. In The Ecology and Management of Wood in World Rivers, ed. Gregory, S. V., Boyer, K. and Gurnell, A.. Bethesda, MD: American Fisheries Society, pp. 213–234.
Power, M. E. (1990). Resource enhancement by indirect effects of grazers: armored catfish, algae, and sediment. Ecology, 71, 897–904.
Power, M. E. (1992). Top-down and bottom-up forces in food webs: do plants have primacy? Ecology, 73, 733–746.
Power, M. E., Matthews, W. J. and Stewart, A. J. (1985). Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology, 66, 1448–1456.
Power, M. E., Parker, M. S. and Dietrich, W. E. (2008). Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecological Monographs, 78, 263–282.
Pringle, C. M., Blake, G. A., Covich, A. P., Buzby, K. M. and Finley, A. (1993). Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia, 93, 1–11.
Riley, R. H., Townsend, C. R., Raffaelli, D. A. and Flecker, A. S. (2004). Sources and effects of subsidies along the stream-estuary continuum. In Food Webs at the Landscape Level, ed. Polis, G. A., Power, M. E. and Huxel, G. R.. Chicago, IL: The University of Chicago Press, pp. 241–267.
Rosemond, A. D., Pringle, C. M., Ramirez, A., Paul, M. J. and Meyer, J. L. (2002). Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnology and Oceanography, 47, 278–289.
Schaus, M. H., Vanni, M. J., Wissing, T. E., Bremigan, M. T., Garvey, J. E. and Stein, R. A. (1997). Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography, 42, 1386–1397.
Schaus, M. H., Vanni, M. J. and Wissing, T. E. (2002). Biomass-dependent diet shifts in omnivorous gizzard shad: implications for growth, food web, and ecosystem effects. Transactions of the American Fisheries Society, 131, 40–54.
Schaus, M. H., Godwin, W., Battoe, L., et al. (2010). Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshwater Biology, 55, 2401–2413.
Scheffer, M. and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648–656.
Scheuerell, M. D., Moore, J. W., Schindler, D. E. and Harvey, C. J. (2007). Varying effects of anadromous sockeye salmon on the trophic ecology of two species of resident salmonids in Southwest Alaska. Freshwater Biology, 52, 1944–1956.
Schindler, D. E., Kitchell, J. F., He, X., Carpenter, S. R., Hodgson, J. R. and Cottingham, K. L. (1993). Food-web structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society, 122, 756–772.
Schindler, D. E., Knapp, R. A. and Leavitt, P. R. (2001). Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems, 4, 308–321.
Schindler, D. E., Scheuerell, M. D., Moore, J. W., et al. (2003). Pacific salmon and the ecology of coastal ecosystems. Frontiers in Ecology and the Environment, 1, 31–37.
Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science, 195, 260–262.
Schindler, D. W. (1978). Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnology and Oceanography, 23, 478–486.
Schoo, K. L., Aberle, N., Malzahn, A. M. and Boersma, M. (2012). Food quality affects secondary consumers even at low qualities: an experimental test with larval European lobster. PLoS One, 7, e33550.
Shapiro, J., Lamarra, V. and Lynch, M. (1975). Biomanipulation: an ecosystem approach to lake restoration. In Symposium on Water Quality Management through Biological Control, Gainesville, FL. ed. Brezonik, P. L. and Fox, J. L.. Gainesville, FL: University of Florida, pp. 85–96.
Shostell, J. and Bukaveckas, P. A. (2004). Seasonal and interannual variation in N and P fluxes associated with tributary inputs, consumer recycling and algal growth. Aquatic Ecology, 38, 359–373.
Shurin, J. B., Gruner, D. S. and Hillebrand, H. (2006). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society of London B, 273, 1–9.
Simon, K. S., Townsend, C. R., Biggs, B. J. F., Bowden, W. B. and Frew, R. D. (2004). Habitat-specific nitrogen dynamics in New Zealand streams containing native or invasive fish. Ecosystems, 7, 777–792.
Small, G. E., Pringle, C. M., Pyron, M. and Duff, J. H. (2011). Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient Neotropical streams. Ecology, 92, 386–397.
Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green-algae in lake phytoplankton. Science, 221, 669–671.
Smith, V. H. and Schindler, D. W. (2009). Eutrophication science: where do we go from here?Trends in Ecology and Evolution, 24, 201–207.
Smith, V. H., Joye, S. B. and Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51, 351–355.
Søndergaard, M., Liboriussen, L., Pedersen, A. R. and Jeppesen, E. (2008). Lake restoration by fish removal: short- and long-term effects in 36 Danish lakes. Ecosystems, 11, 1291–1305.
Sousa, R., Gutiérrez, J. L. and Aldridge, D. C. (2009). Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions, 11, 2367–2385.
Sousa, R., Novais, A., Costa, R. and Strayer, D. L. (2013). Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia, in press.
Spooner, D. E., Frost, P. C., Hillebrand, H., et al. (2013). Nutrient loading associated with agriculture land use dampens the importance of consumer-mediated niche construction. Ecology Letters, 16(9), 1115–1125.
Sterner, R. W. and Elser, J. J. (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University Press.
Sterner, R. W., Elser, J. J., Fee, E. J., Guildford, S. J. and Chrzanowski, T. H. (1997). The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. American Naturalist, 150, 663–684.
Strayer, D. L. (2010). Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology, 55, 152–174.
Strayer, D. L. (2012). Eight questions about invasions and ecosystem functioning. Ecology Letters, 15, 1199–1210.
Strayer, D. L. and Dudgeon, D. (2010). Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29, 344–358.
Strayer, D. L., Caraco, N. F., Cole, J. J., Findlay, S. and Pace, M. L. (1999). Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience, 49, 19–27.
Striebel, M., Sporl, G. and Stibor, H. (2008). Light-induced changes of plankton growth and stoichiometry: experiments with natural phytoplankton communities. Limnology and Oceanography, 53, 513–522.
Striebel, M., Behl, S. and Stibor, H. (2009). The coupling of biodiversity and productivity in phytoplankton communities: consequences for biomass stoichiometry. Ecology, 90, 2025–2031.
Taylor, B. W., Flecker, A. S. and Hall, R. O. Jr. (2006). Loss of harvested fish species disrupts carbon flow in a diverse tropical river. Science, 313, 833–836.
Taylor, J. M., Back, J. A. and King, R. S. (2012a). Grazing minnows increase benthic autotrophy and enhance the response of periphyton elemental composition to experimental phosphorus additions. Freshwater Science, 31, 451–462.
Taylor, J. M., Back, J. A., Valenti, T. W. and King, R. S. (2012b). Fish-mediated nutrient cycling and benthic microbial processes: can consumers influence stream nutrient cycling at multiple spatial scales? Freshwater Science, 31, 928–944.
Tessier, A. J. and Woodruff, P. (2002). Cryptic trophic cascade along a gradient of lake size. Ecology, 83, 1263–1270.
Torres, L. E. and Vanni, M. J. (2007). Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos, 116, 259–270.
Townsend, C. R. (2003). Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conservation Biology, 17, 38–47.
Vadeboncoeur, Y., Jeppesen, E., Vander Zanden, M. J., et al. (2003). From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography, 48, 1408–1418.
Vander Zanden, M. J., Vadeboncoeur, Y. and Chandra, S. (2011). Fish reliance on littoral-benthic resources and the distribution of primary production in lakes. Ecosystems, 14, 894–903.
Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.
Vanni, M. J., Flecker, A. S., Hood, J. M. and Headworth, J. L. (2002). Stoichiometry of nutrient cycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecology Letters, 5, 285–293.
Vanni, M. J., Arend, K. K., Bremigan, M. T., et al. (2005). Linking landscapes and food webs: effects of omnivorous fish and watersheds on reservoir ecosystems. BioScience, 55, 155–167.
Vanni, M. J., Bowling, A. M., Dickman, E. M., et al. (2006). Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology, 87, 1696–1709.
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.
Vaughn, C. C. (2010). Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. Bioscience, 60, 25–35.
Wallace, J. B., Eggert, S. L., Meyer, J. L. and Webster, J. R. (1999). Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs, 69, 409–442.
Wetzel, R. G. (2001). Limnology – Lake and River Ecosystems. San Diego, CA: Elsevier/Academic Press.
Whiles, M. R., Lips, K. R., Pringle, C. M., et al. (2006). The effects of amphibian population declines on the structure and function of Neo-tropical stream ecosystems. Frontiers in Ecology and the Environment, 4, 27–34.
Whiles, M. R., Hall Jr., R. O., Dodds, W. K., et al. (2013). Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems, 16, 146–157.
Willson, M. F., Gende, S. M. and Marston, B. H. (1998). Fishes and the forest. Bioscience, 48, 455–462.
Wilson, H. F. and Xenopoulos, M. A. (2011). Nutrient recycling by fish in streams along a gradient of agricultural land use. Global Change Biology, 17, 130–139.
Winemiller, K. O. and Jepsen, D. B. (2004). Migratory neotropical fish subsidize food webs of oligotrophic blackwater rivers. In Food Webs at the Landscape Level, ed. Polis, G. A., Power, M. E. and Huxel, G. R.. Chicago, IL: University of Chicago Press, pp. 115–132.
Winemiller, K. O., Tarim, S., Shormann, D. and Cotner, J. B. (2000). Fish assemblage structure in relation to environmental variation among Brazos River oxbow lakes. Transactions of the American Fisheries Society, 129, 451–468.
Wootton, J. T. and Power, M. E. (1993). Productivity, consumers, and the structure of a river food chain. Proceedings of the National Academy of Sciences of the USA, 90, 1384–1387.