Published online by Cambridge University Press: 19 August 2009
In the previous chapters, we have thoroughly discussed the 2-D CWT and some of its applications. Then we have made the connection with the group theoretical origins of the method, thus establishing a general framework, based on the coherent state formalism. In the present chapter, we will apply the same technique to a number of different situations involving higher dimensions: wavelets in 3-D space ℝ3, wavelets in ℝn (n > 3), and wavelets on the 2-sphere S2. Then, in the next chapter, we will treat time-dependent wavelets, that is, wavelets on space–time, designed for motion analysis.
In all cases, the technique is the same. First one identifies the manifold on which the signals are defined and the appropriate group of transformations acting on the latter. Next one chooses a square integrable representation of that group, possibly modulo some subgroup. Then one constructs wavelets as admissible vectors and derives the corresponding wavelet transform.
Three-dimensional wavelets
Some physical phenomena are intrinsically multiscale and three-dimensional. Typical examples may be found in fluid dynamics, for instance the appearance of coherent structures in turbulent flows, or the disentangling of a wave train in (mostly underwater) acoustics, as discussed above. In such cases, a 3-D wavelet analysis is clearly more adequate and likely to yield a deeper understanding [56].
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.