Published online by Cambridge University Press: 05 November 2014
Input–output behaviour of functions
Many functions can be described by some kind of expression, e.g. x2 + 1, that tells us how, given an input value for x, one can calculate an output value. In the present case this proceeds as follows: first determine the square of the input value and consequently add 1 to this. The so-called ‘variable’ x acts as an arbitrary (or abstract) input value. In a concrete case, for example when using input value 3, one must replace x with 3 in the expression. Function x2 + 1 then delivers the output value 32 + 1, which adds up to 10.
In order to emphasise the ‘abstract’ role of such a variable x in an expression for a function, it is customary to use the special symbol λ: one adds λx in front of the expression, followed by a dot as a separation marker. Hence, instead of x2 + 1, one writes λx · x2 + 1, which means ‘the function mapping x to x2 + 1’. This notation expresses that x itself is not a concrete input value, but an abstraction. As soon as a concrete input value comes in sight, e.g. 3, we may give this as an argument to the function, thus making a start with the calculation.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.