Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T02:50:25.145Z Has data issue: false hasContentIssue false

Section 1 - Infectious Conditions

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aho, K., Sievers, K. and Salo, O. P. 1969. Late complications of syphilis: A comparative epidemiological and serological study of cardiovascular syphilis and various forms of neurosyphilis. Acta Derm Venereol, 49, 336–42.Google Scholar
Aldrich, M. S., Burke, J. M., and Gulati, S. M. 1983. Angiographic findings in a young man with recurrent stroke and positive fluorescent treponemal antibody (FTA). Stroke, 14, 1001–4.CrossRefGoogle Scholar
Alpers, B. J. 1954. Clinical Neurology, 3rd edn. Philadelphia: FA Davis.Google Scholar
Bates, B., Choi, J. Y., Duncan, P. W., et al. 2005. Veterans Affairs/Department of Defense Clinical Practice Guideline for the Management of Adult Stroke Rehabilitation Care: Executive summary. Stroke, 36, 2049–56.Google Scholar
Bordon, J., Martinez-Vazquez, C., Alvarez, M., et al. 1995. Neurosyphilis in HIV-infected patients. Eur J Clin Microbiol Infect Dis, 14, 864–9.CrossRefGoogle ScholarPubMed
Brightbill, T. C., Ihmeidan, I. H., Post, M. J., Berger, J. R., and Katz, D. A. 1995. Neurosyphilis in HIV-positive and HIV-negative patients: Neuroimaging findings. Am J Neuroradiol, 16, 703–11.Google Scholar
Buchacz, K., Patel, P., Taylor, M., et al. 2004. Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections. AIDS, 18, 2075–9.Google Scholar
Burke, J. M. and Schaberg, D. R. 1985. Neurosyphilis in the antibiotic era. Neurology, 35, 1368–71.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC). 2002. Sexually Transmitted Diseases Treatment Guidelines 2002. Morbidity and Mortality Weekly Report, vol. 51, RR-6.Google Scholar
Centers for Disease Control and Prevention (CDC). 2015. Sexually Transmitted Diseases Treatment Guidelines Syphilis, 2015. Morbidity and Mortality Weekly Report, vol. 64, No. 3.Google Scholar
Clark, E. G. and Danbolt, N. 1955. The Oslo study of the natural history of untreated syphilis; an epidemiologic investigation based on a restudy of the Boeck–Bruusgaard material; a review and appraisal. J Chronic Dis, 2, 311–44.Google Scholar
Cordato, D. J., Djekic, S., Sanjeev, R., et al. 2013. Prevalence of positive syphilis serology and meningovascular neurosyphilis in patients admitted with stroke and TIA from a culturally diverse population. J Clin Neurosci, 20, 943–7.Google Scholar
Danielsen, A. G., Weismann, K., Jorgensen, B. B., Heidenheim, M., and Fugleholm, A. M. 2004. Incidence, clinical presentation and treatment of neurosyphilis in Denmark 1980–1997. Acta Derm Venereol, 84, 459–62.Google Scholar
Davis, L. and Schmitt, J. 1989. Clinical significance of cerebrospinal fluid tests for neurosyphilis. Ann Neurol, 25, 50–5.CrossRefGoogle ScholarPubMed
Davis, L. and Sperry, S. 1978. Bell’s palsy and secondary syphilis: CSF spirochetes detected by immunofluorescence. Ann Neurol, 4, 378–80.Google Scholar
Duncan, P. W., Zorowitz, R., Bates, B., et al. 2005. Management of adult stroke rehabilitation care: A clinical practice guideline. Stroke, 36, e10043.CrossRefGoogle Scholar
Farhi, D. and Dupin, N. 2010. Origins of syphilis and management of the immunocompetent patient: Facts and controversies. Clin Derm, 28, 533–8.Google Scholar
Fisher, M. and Poser, C. M. 1977. Syphilitic meningomyelitis: A case report. Arch Neurol, 34, 785.Google Scholar
Flint, A. C., Liberato, B. B., Anziska, Y., Schantz-Dunn, J., and Wright, C. B. 2005. Meningovascular syphilis as a cause of basilar artery stenosis. Neurology, 64, 391–2.Google Scholar
Funnye, A. S. and Akhtar, A. J. 2003. Syphilis and human immunodeficiency virus co-infection. J Natl Med Assoc, 95, 363–82.Google ScholarPubMed
Gaa, J., Weidauer, S., Sitzer, M., Lanfermann, H., and Zanella, F. E. 2004. Cerebral vasculitis due to Treponema pallidum infection: MRI and MRA findings. Eur Radiol, 14, 746–7.Google Scholar
Gallego, J., Soriano, G., Zubieta, J. L., Delgado, G., and Villanueva, J. A. 1994. Magnetic resonance angiography in meningovascular syphilis. Neuroradiology, 36, 208–9.CrossRefGoogle ScholarPubMed
Gjestland, T. 1955. The Oslo study of untreated syphilis: An epidemiologic investigation of the natural course of syphilis infection based upon restudy of the Boeck–Bruusgaard material. Acta Derm Venereol, 35, 3368, Annex I–LVI.Google Scholar
Golden, M. R., Marra, C. M., and Holmes, K. K. 2003. Update on syphilis: Resurgence of an old problem. JAMA, 290, 1510–4.Google Scholar
Good, C. D., and Jager, H. R. 2000. Contrast enhancement of the cerebrospinal fluid on MRI in two cases of spirochaetal meningitis. Neuroradiology, 42, 448–50.CrossRefGoogle ScholarPubMed
Gray, F. and Alonso, J. M. 2002. Bacterial infections of the central nervous system. In Greenfield’s Neuropathology, 7th edn., Graham, D. I. and Lantos, P. L., eds. London: Arnold, pp. II:178–II:184.Google Scholar
Harrigan, E. P., McLaughlin, T. J., and Feldman, R. G. 1984. Transverse myelitis due to meningovascular syphilis. Arch Neurol, 41, 337–8.Google Scholar
Holland, B. A., Perrett, L. V., and Mills, C. M. 1986. Meningovascular syphilis: CT and MRI findings. Radiology, 158, 439–42.Google Scholar
Hook, E. W. III, and Peeling, R. W. 2004. Syphilis control: A continuing challenge. N Engl J Med, 351, 122–4.CrossRefGoogle ScholarPubMed
Hooshmand, H., Escobar, M. R., and Kopf, S. W. 1972. Neurosyphilis. A study of 241 patients. JAMA, 219, 726–9.CrossRefGoogle ScholarPubMed
Hotson, J. R. 1981. Modern neurosyphilis: A partially treated chronic meningitis. West J Med, 135, 191200.Google ScholarPubMed
Jay, C. A. 2006. Treatment of neurosyphilis. Curr Treat Options Neurol, 8, 185–92.Google Scholar
Jenier, M., Hegyi, V., Dupin, N., et al. 2014. 2014 European guideline on the management of syphilis. J Eur Acad Dermatol Venereol, 28, 158193.CrossRefGoogle Scholar
Johns, D. R., Tierney, M., and Parker, S. W. 1987. Pure motor hemiplegia due to meningovascular neurosyphilis. Arch Neurol, 44, 1062–5.Google Scholar
Kelley, R. E., Bell, L., Kelley, S. E., and Lee, S. C. 1989. Syphilis detection in cerebrovascular disease. Stroke, 20, 230–4.Google Scholar
Kelley, R. E., Minagar, A., Kelley, B. J., and Brunson, R. 2003. Transcranial Doppler monitoring of response to therapy for meningovascular syphilis. J Neuroimaging, 13, 85–7.Google Scholar
Kierland, R. R., O’Leary, P. A., and Vandoren, E. 1942. Symptomatic neurosyphilis. J Vener Dis Inf, 22, 360–77.Google Scholar
LaFond, R. E, Lukehart, S. A. 2006. Biological basis for syphilis. Clin Microbiol Rev, 19, 2949.Google Scholar
Landi, G., Villani, F., and Anzalone, N. 1990. Variable angiographic findings in patients with stroke and neurosyphilis. Stroke, 21, 333–8.CrossRefGoogle ScholarPubMed
Liu, L. L., Zheng, W. H., Tong, M. L., et al. 2012. Ischemic stroke as a primary symptom of neurosyphilis among HIV-negative emergency patients. J Neurol Sci, 317, 35–9.CrossRefGoogle ScholarPubMed
Lowenstein, D. H., Mills, C., and Simon, R. P. 1987. Acute syphilitic transverse myelitis: Unusual presentation of meningovascular syphilis. Genitourin Med, 63, 333–8.Google Scholar
Lukehart, S. A., Hook, E. W. III, Baker-Zander, S. A., et al. 1988. Invasion of the central nervous system by Treponema pallidum: Implications for diagnosis and treatment. Ann Intern Med, 109, 855–62.Google Scholar
Lukehart, S. A., Godornes, C., Molini, B. J., et al. 2004. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med, 351, 154–8.Google Scholar
Marra, C. M. 2004. Neurosyphilis. In Infections of the Central Nervous System, 3rd edn. Philadelphia: Lippincott, Williams & Wilkins, pp. 649–57.Google Scholar
Marra, C. M. 2015. Neurosyphilis. Continuum (Minneap Minn), 21, 1714–28.Google ScholarPubMed
Marra, C. M., Maxwell, C. L., Smith, S. L., et al. 2004a. Cerebrospinal fluid abnormalities in patients with syphilis: Association with clinical and laboratory features. J Infect Dis, 189, 369–76.CrossRefGoogle ScholarPubMed
Marra, C. M., Maxwell, C. L., Tantalo, L., et al. 2004b. Normalization of cerebrospinal fluid abnormalities after neurosyphilis therapy: Does HIV status matter? Clin Infect Dis, 38, 1001–6.CrossRefGoogle ScholarPubMed
Merritt, H. H., Adams, R. D., and Solomon, H. C. 1946. Neurosyphilis. New York: Oxford University Press, pp. 83174.Google Scholar
Merritt, H. H. and Moore, M. 1935. Acute syphilitic meningitis. Medicine, 14, 119–83.Google Scholar
Moore, J. 1941. The Modern Treatment of Syphilis, 2nd edn., Springfield: CC Thomas.Google Scholar
Nabatame, H., Nakamura, K., Matuda, M., et al. 1992. MRI of syphilitic myelitis. Neuroradiology, 34, 105–6.Google Scholar
Noordhoek, G. T., Engelkens, H. J., Judanarso, J., et al. 1991. Yaws in West Sumatra, Indonesia: Clinical manifestations, serological findings and characterization of new Treponema isolates by DNA probes. Eur J Clin Microbiol Infect Dis, 10, 12–9.Google Scholar
Nordenbo, A. M., and Sorensen, P. S. 1981. The incidence and clinical presentation of neurosyphilis in Greater Copenhagen, 1974 through 1978. Acta Neurol Scand, 63, 237–46.Google Scholar
Peng, F., Hu, X., Zhong, X., et al. 2008. CT and MR findings in HIV-negative neurosyphilis. Eur J Radiol, 66, 16.CrossRefGoogle Scholar
Perdrup, A., Jorgensen, B. B., and Pedersen, N. S. 1981. The profile of neurosyphilis in Denmark. A clinical and serological study of all patients in Denmark with neurosyphilis disclosed in the years 1971–1979 incl. by Wassermann reaction (CWRM) in the cerebrospinal fluid. Acta Derm Venereol Suppl (Stockh), 96, 114.Google Scholar
Peterman, T., Heffelfinger, J., Swint, E., and Groseclose, S. 2005. The changing epidemiology of syphilis. Sex Transm Dis, 32, S4S10.Google Scholar
Peters, K. M., Adam, G., Biedermann, M., Zilkens, K. W., and Gunther, R. 1993. Osteomyelitis today: Diagnostic imaging and therapy. Zentralbl Chir, 118, 637–45.Google Scholar
San Francisco Department of Public Health. 2005. San Francisco Sexually Transmitted Disease Annual Summary, 2004.Google Scholar
Shockman, S., Buescher, L. S., Stone, S. P. 2014. Syphilis in the United States. Clin Derm, 32, 213–8.Google Scholar
Silber, M. H. 1989. Syphilitic myelopathy. Genitourin Med, 65, 338–41.Google ScholarPubMed
Simon, R. P. 1985. Neurosyphilis. Arch Neurol, 42, 606–13.Google Scholar
Timmermans, M. and Carr, J. 2004. Neurosyphilis in the modern era. J Neurol Neurosurg Psychiatry, 75, 1727–30.Google Scholar
Tyler, K. L., Sandberg, E., and Baum, K. F. 1994. Medical medullary syndrome and meningovascular syphilis: A case report in an HIV-infected man and a review of the literature. Neurology, 44, 2231–5.Google Scholar
Umashankar, G., Gupta, V., and Harik, S. I. 2004. Acute bilateral inferior cerebellar infarction in a patient with neurosyphilis. Arch Neurol, 61, 953–6.Google Scholar
Vartdal, F., Vandvik, B., Michaelsen, T. E., Loe, K., and Norrby, E. 1982. Neurosyphilis: Intrathecal synthesis of oligoclonal antibodies to Treponema pallidum. Ann Neurol, 11, 3540.Google Scholar
Vatz, K. A., Scheibel, R. L., Keiffer, S. A., and Ansari, K. A. 1974. Neurosyphilis and diffuse cerebral angiopathy: A case report. Neurology, 24, 472–6.Google Scholar
Winstein, C. J., Stein, J., Arena, R., et al. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. 2016. Stroke, 47, e98169.Google Scholar
Wong, T., Fonesca, K., Chernesky, M.A., et al. 2015. Canadian Public Health Laboratory Network laboratory guidelines for the diagnosis of neurosyphilis in Canada. Can J Infect Dis Med Microbiol, 26 (suppl A), 18A22A.Google Scholar

References

Akalin, H., Akdis, A. C., and Mistik, R., et al. 1994. Cerebrospinal fluid interleukin-beta/interleukin-I receptor antagonist balance and tumor necrosis factor-alpha concentrations in tuberculous, viral and acute bacterial meningitis. Scand J Infect Dis, 26, 667–74.Google Scholar
Andronikou, S., Wilmshurst, J., Hatherill, M., and VanToorn, R. 2006. Distribution of brain infarction in children with tuberculous meningitis and correlation with outcome score at 6 months. Pediatr Radiol, 36, 1289–94.Google Scholar
Askanazy, M. 1910. (Quoted by Winkleman, N. W., and Moore, T. 1940. Meningeal blood vessels in tuberculous meningitis. Am Rev Tuberc, 42, 315–33).Google Scholar
Babu, G. N., Kumar, A., Kalita, J., and Misra, U. K. 2008. Proinflammatory cytokine levels in the serums and cerebrospinal fluid of tuberculous meningitis patients. Neurosc Lett, 436, 4851.Google Scholar
Baumgarten, P. 1881. Gammose arteritis und entsprechende tuberculose veranderungen. Virchows Arch Pathol Anat Physiol Klin Med, 179, 86.Google Scholar
Berenguer, J., Moreno, S., Laguna, F. et al. 1992. Tuberculous meningitis in patients infected with the human immunodeficiency virus infection. N Engl J Med, 326, 668–72.Google Scholar
Brancusi, F., Farrar, J., and Heemskerk, D. 2012. Tuberculous meningitis in adults: A review of a decade of developments focusing on prognostic factors for outcome. Future Microbiol, 7, 1101–16.Google Scholar
Chen, P., Shi, M., Feng, G. D., et al. 2012. A highly efficient Ziehl–Neelsen stain: Identifying de novo intracellular Mycobacterium tuberculosis and improving detection of extracellular M. tuberculosis in cerebrospinal fluid. J Clin Microbiol, 50, 1166–70.Google Scholar
Collomb, H., Lemercier, G., Virieu, R., and Dumas, M. 1967. Multiple cerebral vascular thrombosis due to arteritis associated with tuberculous meningitis. Bulletin Societé Medecale d’Afriqu Noire de Langue Français, 12, 813–22.Google Scholar
Cotran, R. S., Kumar, V., and Collins, T. 1999. Diseases of immunity. In Robbins Pathological Basis of Disease, eds. Cotran, R. S., Kumar, V., and Collins., T. Philadelphia: W. B. Saunders, pp. 188259.Google Scholar
Crithchley, J. A., Young, F., Orton, L., and Gamer, P. 2013. Corticosteroids for prevention of mortality in people with tuberculosis: A systemic review and meta-analysis. The Lancet, 13, 223–37.Google Scholar
Dalal, P. M. 1979. Observations on the involvement of cerebral vessels in tuberculous meningitis in adults. In Advances in Neurology, eds. Goldstein, M., Bolis, L., Fieschi, C., Gorini, S., and Millikan, C. H.. New York: Raven Press, vol. 25, pp. 149–59.Google Scholar
Dalal, P. M. and Dalal, K. P. 1989. Cerebrovascular manifestations of infectious disease. In Toole, J. F.., ed. Handbook of Clinical Neurology. Amsterdam: Elsevier, vol. 11, pp. 411–41.Google Scholar
Dastur, D. K. and Lalitha, V. S. 1973. The many facets of neurotuberculosis: An epitome of neuropathology. In Progress in Neuropathology, ed. Zimmerman, H.. New York: Grune and Stratton, pp. 351408.Google Scholar
Dastur, D. K., Lalitha, V. S., Udani, P. M., and Parekh, U. 1970. The brain and meninges in TBM. Gross pathology and pathogenesis in 100 cases. Neurol India, 18, 86100.Google Scholar
Denkinger, C. M., Schumacher, S. G., Boehme, C. C., et al. 2014. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: systematic review and meta-analysis. Eur Respir J, 44, 435–46.Google Scholar
Deshpande, D. H., Bharucha, E. P., and Mondkar, V. P. 1969. Tuberculous meningitis in adults. Neurol India, 17, 2835.Google ScholarPubMed
Donald, P. R., Schoeman, J. F., Beyers, N., et al. 1995. Concentrations of interferon gamma, tumor necrosis factor alpha, and interleukin-I beta in the cerebrospinal fluid of children treated for tuberculous meningitis. Clin Infect Dis, 21, 924–9.Google Scholar
Dube, M. P., Holton, P. D., and Larsen, R. A. 1992. Tuberculous meningitis in patients with and without human immunodeficiency virus infection. Am J Med, 93, 520–4.Google Scholar
Hsieh, F., Chia, L., and Shen, W. 1992. Location of cerebral infarctions in tuberculous meningitis. Neuroradiology, 34, 197–9.Google Scholar
Kalita, J., Misra, U. K., and Nair, P. P. 2009. Predictors of stroke and its significance in the outcome of tuberculous meningitis. J Stroke Cerebrovasc Dis, 18, 251–58.Google Scholar
Kalita, J., Prasad, S., Maurya, P. K., Kumar, S., and Misra, U. K. 2012. MR angiography in tuberculous meningitis. Acta Radiol, 53, 324–29.Google Scholar
Katrak, S. M., Shembalkar, P. K., Bijwe, S. R., and Bhandarkar, L. D. 2000. The clinical, radiological and pathological profile of tuberculous meningitis in patients with and without human immunodeficiency virus infection. J Neurol Sci, 181, 118–26.Google Scholar
Kawre, K. K., Satishchandra, P., Shankar, S. K., et al. 2001. Tuberculous meningitis with and without HIV infection. Abstracts of Annual Conference of Neurological Society of India, A225, 311–2.Google Scholar
Kingsley, D. P. E., Hendrickse, W. A., Kendall, B. E., et al. 1987. Tuberculous meningitis: Role of CT in management and prognosis. J Neurol Neurosurg Psychiatry, 50, 30–6.Google Scholar
Lammie, G. A., Hewlett, R. H., Schoeman, J. F., and Donald, P.R., 2009. Tuberculous cerebrovascular disease: A review. J Infect, 59, 156–66.Google Scholar
Lan, S. H., Chang, W. N., Lu, C. H., Lui, C. C., and Chang, H. W. 2001. Cerebral infarction in chronic meningitis: A comparison of tuberculous meningitis and cryptococcal meningitis. Q J Med, 94, 247–53.Google Scholar
Lehrer, H. 1966. The angiographic triad in tuberculous meningitis. Radiology, 87, 829.Google Scholar
Mastroianni, C. M., Paoletti, F., Lichtner, M., D’Agostino, C., et al. 1997. Cerebrospinal fluid cytokines in patients with tuberculous meningitis. Clin Immunol Immunopathol, 84, 171–6.Google Scholar
Mishra, N. K. and Goyal, M. 1999. Imaging of CNS Tuberculosis in Neurology in Tropics, eds. Chopra, J. S., and Sawhney, I. M. S.. New Delhi: BI Churchill Livingstone Pvt. Ltd, pp. 370–90.Google Scholar
Misra, U. K., Kalita, J., and Maurya, P. K. 2011. Stroke in tuberculous meningitis. J Neurol Sci, 303, 2230.Google Scholar
Morse, D. 1961. Prehistoric TB in America. Am Rev Respir Dis, 83, 489.Google Scholar
Patel, V. B., Bhigjee, A. I., Bill, P. L. A., and Connolly, C. A. 2002. Cytokine profile in HIV seropositive patients with tuberculous meningitis. J Neurol Neurosurg Psychiatry, 73, 598–9.Google Scholar
Pienaar, M., Andronikou, S., and van Toorn, R. 2009. MRI to demonstrate diagnostic features and complications of TBM not seen with CT. Childs Nerv Syst, 25, 941–7.CrossRefGoogle Scholar
Poltera, A. A. 1977. Thrombogenic intracranial vasculitis in tuberculous meningitis. A 20 year post mortem survey. Acta Neurol Belg, 77, 112–24.Google Scholar
Porkert, M. T., Sotir, M., Parrott-Moore, P., and Blumberg, H. M. 1997. Tuberculous meningitis at a large inner city medical centre. Am J Med Sci, 313, 325–31.Google Scholar
Prasad, K., Singh, M. B., and Ryan, H. 2016. Corticosteroids for managing tuberculous meningitis. Cochrane Database System Rev, 4, 164.Google Scholar
Rich, A. R. and McCordock, H. A. 1933. The pathogenesis of tuberculous meningitis. Bull Johns Hopkins Hosp, 53, 537.Google Scholar
Rojas-Echeverri, L. A., Soto-Hernandez, J. L., and Garza, S., et al. 1996. Predictive value of digital subtraction angiography in patients with tuberculous meningitis. Neuroradiology, 38, 2024.Google Scholar
Shankar, S. K. 1989. CNS vasculopathy–revisited. In Progress in Clinical Neurosciences 5, eds. Sinha, K. K. and Chandra, P.. Ranchi: Neurological Society of India, Catholic Press, pp. 93101.Google Scholar
Shukla, R., Abbas, A., Kumar, P., Gupta, R. K., et al. 2008. Evaluation of cerebral infarction in tuberculous meningitis by diffusion weighted imaging. J Infect, 57, 298306.Google Scholar
Simmons, C. P., Thwaites, G. E., Quyen, N. T. et al., 2005. The clinical benefit of adjunctive dexamethasone in the tuberculous meningitis is not associated with measurable attenuation of peripheral or local immune responses J Immunol, 175, 579–90.Google Scholar
Singhal, B. S., Bhagwati, S. N., Sayed, A. H., and Laud, G. W. 1975. Raised intracranial pressure in tuberculous meningitis. Neurol India, 23, 32–9.Google Scholar
Sinha, H. P., Modi, M., Prabhakar, S., and Singh, P. 2015. Do cytokines correlate with disease activity in tuberculous meningitis? Neurology Asia, 20, 243–50.Google Scholar
Streptomycin in Tuberculosis Trial Committee. 1948. Medical Research Council streptomycin treatment of tuberculous meningitis. Lancet, 1, 582–96.Google Scholar
Sze, G. and Zimmerman, R. D. 1988. The magnetic resonance imaging of infections and inflammatory diseases. Radiol Clin North Am, 26, 839–59.CrossRefGoogle ScholarPubMed
Takahashi, T., Nakayama, T., and Tamura, M., et al. 2005. Nested polymerase chain reaction for assessing the clinical cause of tuberculous meningitis. Neurology, 64, 1789–93.Google Scholar
Thomas, M. D., Chopra, J. S., Banerjee, A. K., and Singh, M. S. 1997. Tuberculous meningitis: A clinicopathological study. Neurol India, 25, 2634.Google Scholar
Thwaites, G. E., Bang, N. D., Dung, N. H., et al. 2004. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med, 351, 1741–51.Google Scholar
Thwaites, G. E., Macmullen-Price, J., Chau, T. T. H., and Mal, P. P., et al. 2007. Serial MRI to determine the effect of dexamethasone on the cerebral pathology of tuberculous meningitis: An observational study. Lancet Neurol, 6, 282–90.Google Scholar
Thwaites, G. E., Bhavnani, S. M., and Chau, T. T., et al. 2011. Randomized pharmacokinetic and pharmacodynamics comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother, 55, 3244–53.Google Scholar
Udani, P. M., Parekh, U. C., and Dastur, D. K. 1971. Neurological and related syndromes in CNS tuberculosis: Clinical features and pathogenesis. J Neurol Sci, 14, 341–57.Google Scholar
Vashishta, R. K. and Banerjee, A. K. 1999. CNS Tuberculosis – Pathology. In Neurology in Tropics, eds. Chopra, J. S., and Sawhney, I. M. S.. New Delhi: BI Churchill Livingstone Pvt. Ltd, pp. 391–8.Google Scholar
Villora, M. F., Fortea, F., Moreno, S., et al. 1995. MR imaging and CT of central nervous system tuberculosis in patients with AIDS. Radiol Clin North Am, 33, 805–20.Google Scholar
Wadia, N. H. and Singhal, B. S. 1967. Cerebral arteriography in tuberculous meningitis. Neurol India, 25, 127–32.Google Scholar
Winkleman, N. W. and Moore, T. 1940. Meningeal blood vessels in tuberculous meningitis. Am Rev Tuberc, 42, 315–33.Google Scholar
WHO, 2014. Global Tuberculosis Report 2014. Geneva: World Health Organization.Google Scholar
Yamashima, T., Kashihara, K., Ikeda, K., Kubota, T., and Yamamoto, S. 1985. Three phases of cerebral arteriopathy in meningitis: Vasospasm and vasodilatation followed by organic stenosis. Neurosurgery, 16, 546–53.Google Scholar
Yechoor, V. K., Shandera, W. X., Rodriguez, P., and Cate, T. R. 1990. Tuberculous meningitis among adults with or without HIV infection. Arch Intern Med, 156, 1710–6.Google Scholar

References

Antinori, S., Corbellino, M., Meroni, L., et al. 2013. Aspergillus meningitis: A rare clinical manifestation of central nervous system aspergillosis. Case report and review of 92 cases. J Infection, 66, 218–38.CrossRefGoogle ScholarPubMed
Arsura, E. L., Johnson, R., Penrose, J., et al. 2005. Neuroimaging as a guide to predict outcomes for patients with coccidioidal meningitis. Clin Inf Dis, 40, 624–27.CrossRefGoogle ScholarPubMed
Asari, S., Nishimoto, A., and Murakami, M. 1988. A rare case of cerebral Aspergillus aneurysm at the site of the temporary clip application. No Shinkie Geka, 16, 1079–82.Google Scholar
Baddley, J. W., Salzman, D., and Pappas, P. G. 2002. Fungal brain abscess in transplant recipients: Epidemiologic, microbiologic, and clinical features. Clin Transplant, 16, 419–24.Google Scholar
Bariola, J. R., Perry, P., Pappas, P. G., et al. 2010. Blastomycosis of the central nervous system: A multicenter review of diagnosis and treatment in the modern era. Clin Inf Dis, 50, 797804.Google Scholar
Beal, M. F., O’Carroll, C. P., Kleinman, G. M., and Grossman, R. I. 1982. Aspergillosis of the central nervous system. Neurology, 32, 473–9.Google Scholar
Bodey, G., Bueltman, B., Duguid, W., et al. 1992. Fungal infections in cancer patients: An international autopsy survey. Eur J Clin Microbiol Infect Dis, 11, 99109.CrossRefGoogle ScholarPubMed
Boes, B., Bashir, R., Boes, C., et al. 1994. Central nervous system aspergillosis: Analysis of 26 cases. J Neuroimaging, 4, 123–9.Google Scholar
Bor, D. H., Woolhandler, S., Nardin, R., Brusch, J., and Himmelstein, D. U. 2013. Infective endocarditis in the U.S., 1998–2009: A nationwide study. PLoS One, 8, e60033.Google Scholar
Breadmore, R., Desmond, P., and Opeskin, K. 1994. Intracranial aspergillosis producing cavernous sinus syndrome and rupture of the internal carotid artery. Australas Radiol, 38, 795–7.Google Scholar
Burgert, S. J., Classen, D. C., Burke, J. P., and Blatter, D. D. 1995. Candidal brain abscess associated with vascular invasion: A devastating complication of vascular catheter-related candidemia. Clin Inf Dis, 21, 202–5.Google Scholar
Cachia, D., Singh, C., Tetzlaff, M.T., Penas-Prado, M. 2015. Middle cerebral artery territory infarct due to cryptococcus infections: An uncommon indication for cerebrospinal fluid analysis in stroke patients. Diagn Cytopath, 43, 632–4.Google Scholar
Cimbaluk, D., Scudiere, J., Butsch, J., and Jakate, S. 2005. Invasive candidal enterocolitis followed shortly by fatal cerebral hemorrhage in immunocompromised patients. J Clin Gastroenterol, 39, 795–7.Google Scholar
Cleri, D. J., Moser, R. L., Viollota, F. J., et al. 2003. Pulmonary aspergillosis and central nervous system hemorrhage as complications of hemolytic anemia treated with corticosteroids. South Med J, 96, 592–5.Google Scholar
Coplin, W. M., Cochran, M. S., Levine, S. R., and Crawford, S. W. 2001. Stroke after bone marrow transplantation: Frequency, aetiology and outcome. Brain, 124, 1043–51.Google Scholar
Corvisier, N., Gray, F., Cherardi, R., et al. 1987. Aspergillosis of ethmoid sinus and optic nerve, with arteritis and rupture of the internal carotid artery. Surg Neurol, 28, 311–5.Google Scholar
de Almeida, S. M., Querioz-Telles, F., Tieve, H. A., Ribeiro, C. E., and Wernek, L. C. 2004. Central nervous system paracoccidiomycosis: clinical features and laboratorial findings. J Infect, 48, 193–8.Google Scholar
de Medeiros, C. R., Bleggi-Torre, L. F., Faoro, L. N., et al. 2001. Cavernous sinus thrombosis caused by zygomycosis after unrelated bone marrow transplantation. Transplant Infectious Diseases, 3, 231–4.Google Scholar
de Pauw, B. D. E. and Meunier, F. 1999. The challenge of invasive fungal infections. Chemotherapy, 45(suppl.), 114.Google Scholar
Dooley, D. P., Hollsten, D. A., Grimes, S. R., and Moss, J. Jr. 1992. Indolent orbital apex syndrome caused by occult mucormycosis. J Clin Neuroophthalmol, 12, 245–9.Google Scholar
Ebright, J. R., Pace, M. T., and Niazi, A. F. 2001. Septic thrombosis of the cavernous sinuses. Arch Intern Med, 161, 2671–6.Google Scholar
Endo, T., Tominaga, T., Konno, H., and Yoshimoto, T. 2002. Fatal subarachnoid hemorrhage, brainstem and cerebellar infarction, caused by aspergillus infection after cerebral aneurysm surgery: Case report. Neurosurgery, 50, 1147–51.Google Scholar
Ermak, D., Kanekar, S., Specht, C. S., Wojnar, M., and Lowden, M. 2014. Looks like a stroke, acts like a stroke, but it’s more than a stroke: A case of cerebral mucormycosis. J Stroke Cerebrovasc Dis, 23, e4034.Google Scholar
Eucker, J., Sezer, O., Graf, B., and Possinger, K. 2001. Mucormycoses. Mycoses, 44, 253–60.Google Scholar
Fu, K. A., Nguyen, P. L., and Sanossian, N. 2015. Basilar artery territory stroke secondary to invasive fungal sphenoid sinusitis: A case report. Case Rep Neurol, 7, 51–8.Google Scholar
Gabelmann, A., Klein, S., Kern, W., et al. 2007. Relevant imaging findings of cerebral aspergillosis on MRI: A retrospective case-based study in immunocompromised patients. Eur J Neurol, 14, 548–55.Google Scholar
Germain, M., Gourdeau, M., and Hebert, J. 1994. Case report: Familial chronic mucocutaneous candidiasis complicated by deep candida infection. Am J Med Sci, 307, 282–3.Google Scholar
Girishkumar, H., Yousuf, A. M., Ghivate, J., and Geisler, E. 1999. Experience with invasive candida infections. Postgrad Med J, 75, 151–2.CrossRefGoogle ScholarPubMed
Gollard, R., Rabb, C., Larsen, R., and Chandrasoma, P. 1994. Isolated cerebral mucormycosis: Case report and therapeutic considerations. Neurosurgery, 34, 174–7.Google Scholar
Gonzalez-Duarte, A., Calleja, J. H., Mitre, V. G., and Ramos, G. G. 2009. Simultaneous central nervous system complications of C. neoformans infection. Neurology Intl, 1, 82–3.Google Scholar
Grouhi, M., Ilan, D., Misbet-Brown, E., and Roifman, C. M., 1998. Cerebral vasculitis associated with chronic mucocutaneous candidiasis. J Pediatr, 133, 571–4.Google Scholar
Hall, W. A. and Nussbaum, E. S. 1995. Isolated cerebral mucormycosis: Case report and therapeutic considerations [correspondence]. Neurosurgery, 36, 623.Google Scholar
Haran, R. P., Chandy, M. J. 1993. Intracranial aspergillus granuloma. Br J Neurosurg, 7, 383–88.Google Scholar
Ihara, K., Makita, Y., Nabeshima, S., Tei, T., Keyaki, A., and Kioka, H. 1990. Aspergillosis of the central nervous system causing subarachnoid hemorrhage from mycotic aneurysm of the basilar artery: Case report. Neurol Med Chir, 30, 618–23.Google Scholar
Kameh, D. S. and Gonzalez, O. R. 1997. Fatal rhino-orbital-cerebral zygomycosis. South Med J, 90, 1133–7.Google Scholar
Khan, M. U., Ali, S., Baig, M. A., et al. 2007. Candida parapsilosis endocarditis 8 months after transient candidemia. Int J Cardiol, 118, e58e59.CrossRefGoogle ScholarPubMed
Kieburtz, K. D., Eskin, T. A., Ketonen, T. A., and Tuite, M. J. 1993. Opportunistic cerebral vasculopathy and stroke in patients with acquired immunodeficiency syndrome. Arch Neurol, 50, 430–2.Google Scholar
Kleinschmidt-DeMasters, B. K. 2002. Central nervous system aspergillosis: A 20-year retrospective series. Hum Pathol, 33, 116–24.Google Scholar
Koc, Z., Koc, F., Yerdelen, D., and Ozdogu, H. 2007. Rhino-orbital-cerebral mucormycosis with different cerebral involvements: Infarct, hemorrhage, and ophthalmoplegia. Int J Neurosci, 117, 1677–90.Google Scholar
Lan, S. H., Chang, W. N., Lu, C. H., Liu, C. C., and Chang, H.W. 2001. Cerebral infarction in chronic meningitis: a comparison of tuberculous meningitis and cryptococcal meningitis. Q J Med, 94, 247–53.Google Scholar
Lass-Florl, C. D., Griff, K., Mayr, A., et al. 2005. Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience. Br J Haematol, 312, 201–7.Google Scholar
Lau, A. H., Takeshita, M., and Ishii, N. 1991. Mycotic (aspergillus) arteritis resulting in fatal subarachnoid hemorrhage: A case report. Angiology, 42, 251–5.Google Scholar
Li, C. S., Huang, C. R., Lu, C. H., Lui, C. C., Chien, C. C., and Chang, W. N. 2004. Concomitant stroke and candida parapsilosis native valve endocarditis: report of one case and literature review. Acta Neurol Taiwan, 13, 131–5.Google Scholar
Lipton, S. A., Hickey, S. F., Morris, J. H., and Loscalzo, J. 1984. Candidal infection in the central nervous system. Am J Med, 76, 101–8.Google Scholar
Liu, Z. Y., Sheng, R. Y., Li, D. L., Li, T. S., and Wang, A. X. 2003. Nosocomial fungal infections, analysis of 149 cases. Zhonghua Yi Xue Za Zhi, 83, 399403.Google Scholar
Mathur, S. C., Friedman, H. D., Kende, A. J., Davis, R. L., and Graziano, S. L. 1999. Cryptic mucor infection leading to massive cerebral infarction at initiation of antileukemic chemotherapy. Ann Hematol, 78, 241–5.Google Scholar
Matsumura, S., Sato, S., Fujiwara, H., et al. 1988. Cerebral aspergillosis as a cerebrovascular accident. Brain Nerve, 40, 225–32.Google Scholar
Munksgaard, B. 2004. Fungal infections. Am J Transplant, 4 (suppl. 10), 110–34.Google Scholar
Munoz, J., Hughes, A., and Guo, Y. 2013. Mucormycosis-associated intracranial hemorrhage. Blood Coag and Fibrinolysis, 24, 100–1.Google Scholar
Murthy, J. M., Sundaram, C., Prasad, V. S., et al. 2000. Aspergillosis of the central nervous system: A study of 21 patients seen in a university hospital in south India. J Assoc Physicians India, 48, 677–81.Google Scholar
Nguyen, F. N., Kar, J. K., Zakaria, A., and Schiess, M. C. 2013. Isolated central nervous system histoplasmosis presenting with ischemic pontine stroke and meningitis in an immune-competent patient. JAMA Neurol, 70, 638–41.Google Scholar
Oner, A. Y., Celik, H., Akpek, S., and Tokgoz, N. 2006. Central nervous system aspergillosis: Magnetic resonance imaging, diffusion-weighted imaging, and magnetic resonance spectroscopy features. Acta Radiologica, 47, 408–12.Google Scholar
Pagano, L., Ricci, P., Montillo, M., et al. 1996. Localization of aspergillosis to the central nervous system among patients with acute leukemia: A report of 14 cases. Gruppo Italiano Malattie Ematologiche dell’Adulto Infection Program. Clin Infect Dis, 23, 628–30.Google Scholar
Parker, J. C., McCloskey, J. J., and Lee, R.S. 1981. Human cerebral candidosis: A postmoretem analysis of 19 patients. Human Path, 12, 23–8.Google Scholar
Piotrowski, W. P. and Pilz, P. 1994. Postoperative fungal arteritis mimicking vasospasm. Neurol Medic Chir, 34, 315–8.Google Scholar
Rangel-Guerra, R., Martinez, H. R., Saenz, C. Bosques-Padilla, F., and Estrada-Bellman, I. 1996. Rhinocerebral and system mycormycosis. Clinical experience with 36 cases. J Neurol Sci, 143, 1930.Google Scholar
Roger, P. M., Boissy, C., Gari-Toussaint, M., et al. 2000. Medical treatment of a pacemaker endocarditis due to Candida albicans and to Candida glabrate. J Inf, 41, 176–8.Google Scholar
Rogers, L. R. 2003. Cerebrovascular complications in cancer patients. Neurol Clin, 21, 167–92.Google Scholar
Rosario, M., Song, S. X., and McCullough, L. D. 2012. An unusual case of stroke. Neurologist, 18, 229–32.Google Scholar
Saul, R. F., Gallagher, J. G., and Mateer, J.E. 1986. Sudden hemiparesis as the presenting sign in cryptococcal meningoencephalitis. Stroke, 17, 753–4.Google Scholar
Scharf, E. L., Cloft, H. J., and Wijdicks, E. 2016. Mucor thrombus. Neurocrit Care, 24, 268–72.Google Scholar
Smith, R. M., Schaefer, M. K., Kainer, M. A., et al. 2013. Fungal infections associated with contaminated methylprednisolone injections. N Engl J Med, 369, 1598–609.Google Scholar
Sun, X. L., Zhang, J., Wang, G. G, et al. 2013 Comparison of characteristics and short-term outcome from fungal infective endocarditis in prosthetic valve endocarditis versus native valve endocarditis. Am J Cardiol, 112, 111–6.Google Scholar
Sundaram, C., Mahadevan, A., Laxmi, V. et al. 2005. Cerebral zygomycosis. Mycoses, 48, 396407.Google Scholar
Suzuki, K., Iwabuchi, N., Kuramochi, S. et al. 1995. Aspergillus aneurysm of the middle cerebral artery causing a fatal subarachnoid hemorrhage. Intern Med, 34, 550–3.Google Scholar
Takahashi, Y., Sugita, Y., Maruiwa, H., et al. 1998. Fatal hemorrhage from rupture of the intracranial internal carotid artery caused by aspergillus arteritis. Neurosurg Rev, 21, 198201.Google Scholar
Terol, J. J., Tassies, D., Lopez-Guillermon, A., et al. 1994. Sepsis by Candida tropicalis in patients with granulocytopenia: A study of 10 cases. Med Clin (Barc), 103, 579–82.Google Scholar
Torres-Cisneros, J., Lopez, O. L., Kusne, S., et al. 1993. CNS aspergillosis in organ transplantation: A clinicopathologic study. J Neurol, Neurosurg, Psychiatry, 56, 188–93.Google Scholar
Verma, A., Brozman, B., and Petito, C. K. 2005. Isolated cerebral mucormycosis: Report of a case and review of the literature. J Neurol Sci, 240, 65–9.Google Scholar
Vilchez, R. A., Fung, J., and Kusne, S. 2002. Cryptococcosis in organ transplant recipients: An overview. Am J Transplant, 2, 576–80.Google Scholar
Walshe, T. J., Hier, D. B., and Caplan, L. R. 1985a. Aspergillosis of the central nervous system: Clinicopathological analysis of 17 patients. Ann Neurol, 18, 574–82.Google Scholar
Walshe, T. J., Hier, D. B., and Caplan, L. R. 1985b. Fungal infections of the central nervous system: Comparative analysis of risk factors and clinical signs. Neurology, 35, 1654–7.Google Scholar
Zalduondo, F. M., Provenzale, J. M., Hulette, C., and Gorecki, J. P. 1996. Meningitis, vasculitis, and cerebritis caused by CNS histoplasmosis: Radiologic–pathologic correlation. Am J Radiol, 166, 194–6.Google Scholar
Zhang, R., Zhang, J. W., and Szerlip, H. M. 2002. Endocarditis and hemorrhagic stroke caused by Cunninghamella bertholletiae infection after kidney transplantation. Am J Kidney Dis, 40, 842–6.Google Scholar

References

Aditya, G. S., Mahadevan, A., Santosh, V., et al. 2004. Cysticercal chronic basal arachnoiditis with infarcts, mimicking tuberculous pathology in endemic areas. Neuropathology, 24, 320–5.Google Scholar
Alarcón, F., Hidalgo, F., Moncayo, J., Viñán, I., and Dueñas, G. 1992a. Cerebral cysticercosis and stroke. Stroke, 23, 224–8.Google Scholar
Alarcón, F., Vanormelingen, K., Moncayo, J., and Viñán, I. 1992b. Cerebral cysticercosis as a risk factor for stroke in young and middle-aged people. Stroke, 23, 1563–5.Google Scholar
Arteaga-Rodríguez, C., Naréssi-Munhoz, A. H., and Hernández-Fustes, O. J. 2004. Infarto cerebral extenso y neurocisticercosis. Rev Neurol, 39, 583.Google Scholar
Asenjo, A. 1950. Setenta y dos casos de cisticercosis en el instituto de neurocirugía. Revista de Neuro-Psiquiatría, 13, 337–53.Google Scholar
Bang, O. Y., Heo, J. H., Choi, S. A., and Kim, D. I. 1997. Large cerebral infarction during praziquantel therapy in neurocysticercosis. Stroke, 28, 211–3.Google Scholar
Barinagarrementería, F. 1989. Causas no aterosclerosas de isquemia cerebral. Arch Inst Nac Neurol Neurocir Mex, 4 (suppl), 33.Google Scholar
Barinagarrementería, F. and Cantú, C. 1992. Neurocysticercosis as a cause of stroke. Stroke, 23, 1180–1.Google Scholar
Barinagarrementería, F. and Cantú, C. 1998. Frequency of cerebral arteritis in subarachnoid cysticercosis. An angiographic study. Stroke, 29, 123–5.Google Scholar
Barinagarrementeria, F. and Del Brutto, O. H. 1988a. Neurocysticercosis and pure motor hemiparesis. Stroke, 19, 1156–8.Google Scholar
Barinagarrementeria, F. and Del Brutto, O. H. 1988b. Ataxic hemiparesis from parenchymal brain cysticercosis. J Neurol, 235, 325.Google Scholar
Barinagarrementeria, F. and Del Brutto, O. H. 1989. Lacunar syndrome due to neurocysticercosis. Arch Neurol, 46, 415–7.Google Scholar
Barinagarrementeria, F., Del Brutto, O. H., and Otero, E. 1988. Ataxic hemiparesis from cysticercosis. Arch Neurol, 45, 246.Google Scholar
Bouldin, A., and Pinter, J. D. 2006. Resolution of arterial stenosis in a patient with periarterial neurocysticercosis treated with oral prednisone. J Child Neurol, 21, 1064–7.Google Scholar
Cantú, C. and Barinagarrementería, F. 1996. Cerebrovascular complications of neurocysticercosis. Clinical and neuroimaging spectrum. Arch Neurol, 53, 233–9.Google Scholar
Cantú, C., Villarreal, J., Soto, J. L., and Barinagarrementeria, F. 1998. Cerebral cysticercotic arteritis: Detection and follow-up by transcranial Doppler. Cerebrovasc Dis, 8, 27.Google Scholar
Cardenas, G., Guevara-Silva, E., Fleury, A., Sciutto, E., and Soto-Hernandez, J. L. 2012. Subarachnoid hemorrhage in neurocysticercosis. A direct or serendipitous association? Neurologist, 18, 324–38.Google Scholar
Catapano, M. S. and Marx, J. A. 1986. Central nervous system cysticercosis simulating an acute cerebellar hemorrhage. Ann Emerg Med, 15, 847–9.Google Scholar
Del Brutto, O. H. 1992. Cysticercosis and cerebrovascular disease: A review. J Neurol Neurosurg Psychiatry, 55, 252–4.Google Scholar
Del Brutto, O. H. 1997a. Albendazole therapy for subarachnoid cysticerci: Clinical and neuroimaging analysis of 17 patients. J Neurol Neurosurg Psychiatry, 62, 659–61.Google Scholar
Del Brutto, O. H. 1997b. Clues to prevent cerebrovascular hazards of cysticidal drug therapy. Stroke, 28, 1088.Google Scholar
Del Brutto, O. H. 2005. Neurocysticercosis. Semin Neurol, 25, 243–51.Google Scholar
Del Brutto, O. H. 2012. Neurocysticercosis among international travelers to disease-endemic areas. J Travel Med, 19, 112–7Google Scholar
Del Brutto, O. H., Lama, J., for the Atahualpa Project Investigators. 2013. The importance of neurocysticercosis in stroke in rural areas of a developing Latin American country. Am J Trop Med Hyg, 89, 374–5.Google Scholar
Del Brutto, O. H., Sotelo, J., Aguirre, R., Diaz-Calderon, E., and Alarcón, T. A. 1992. Albendazole therapy for giant subarachnoid cysticerci. Arch Neurol, 49, 535–8.Google Scholar
Del Brutto, O. H. and Garcia, H. H. 2014. Cysticercosis of the human nervous system. Heildelberg: Springer-Verlag.Google Scholar
Dolpogol, V. B. and Neustaedter, M. 1935. Meningo-encephalitis caused by Cysticercus cellulosae. Arch Neurol Psychiatry, 33, 132–47.Google Scholar
Eboli, P., Drazin, D., Bannykh, S. I., and Schievink, W. 2012. Surgical management and role of medical therapy in unruptured aneurysmal neurocysticercosis. A case report and review of the literature. Neuroradiol J, 25, 337–41.Google Scholar
Escobar, A. and Weidenheim, K. M. 2002. The pathology of neurocysticercosis. In Taenia Solium Cysticercosis. From Basic to Clinical Science, eds. Singh, G., and Prabhakar, S.. Oxford: CAB International, pp. 289305.Google Scholar
García, H. H., Nash, T. E., and Del Brutto, O. H. 2014. Clinical symptoms, diagnosis, and treatment of neurocysticercosis. Lancet Neurol, 13, 1202–15.Google Scholar
García, H. H., Evans, C. A. W., Nash, T. E., et al. 2002. Current consensus guidelines for treatment of neurocysticercosis. Clin Microbiol Rev, 15, 747–56.Google Scholar
Gauthier, N., Sangla, S., Stroh-Marcy, A., and Payen, L. 1995. Neurocysticercose révélée par un accident vasculaire cérébral. J Radiol, 76, 119–23.Google Scholar
Guevara-Dondé, J. E., Gadea-Nieto, M. S., and Gómez-Llata, A. S. 1987. Cisticerco recubriendo un aneurisma de la arteria basilar. Arch Inst Nac Neurol Neurocir Mex, 2, 41–2.Google Scholar
Henneberg, R. 1912. Die tierischen parasiten des zentralnervensystems. I. Des Cysticercus cellulosae. In Handbuch der Neurologie, Vol III, Spezielle Neurologie II, ed. Lewandowsky, M.. Berlin: Verlag von Julius Springer, pp. 642–83.Google Scholar
Huang, P. P., Choudhri, H. F., Jallo, G., and Miller, D. C. 2000. Inflammatory aneurysm and neurocysticercosis: Further evidence for a causal relationship? Case report. Neurosurgery, 47, 466–7.Google Scholar
Jha, S. and Kumar, V. 2000. Neurocysticercosis presenting as stroke. Neurol India, 48, 391–4.Google Scholar
Kim, I. Y., Kim, T. S., Lee, J. H., et al. 2005. Inflammatory aneurysm due to neurocysticercosis. J Clin Neurosci, 12, 585–8.Google Scholar
Kohli, A., Gupta, R., and Kishore, J. 1997. Anterior cerebral artery infarction in neurocysticercosis: Evaluation by MR angiography and in vivo proton MR spectroscopy. Pediatr Neurosurg, 26, 93–6.Google Scholar
Lee, S. I. and Chang, G. Y. 1998. Recurrent brainstem transient ischemic attacks due to neurocysticercosis: A treatable cause. Eur Neurol, 40, 174–5.Google Scholar
Levy, A. S., Lillehei, K. O., Rubinstein, D., and Stears, J. C. 1995. Subarachnoid neurocysticercosis with occlusion of the major intracranial arteries: Case report. Neurosurgery, 36, 183–8.Google Scholar
McCormick, G. F., Giannotta, S., Zee, C. S., and Fisher, M. 1983. Carotid occlusion in cysticercosis. Neurology, 33, 1078–80.Google Scholar
Moniz, E., Loff, R., and Pacheco, L. 1932. Sur le diagnostic de la cysticercose cérébrale. L’Encephale, 27, 4253.Google Scholar
Marquez, J. M. and Arauz, A. 2012. Cerebrovascular complications of neurocysticercosis. Neurologist 18, 1722.CrossRefGoogle ScholarPubMed
Monteiro, L., Almeida-Pinto, J., Leite, I., Xavier, J., and Correia, M. 1994. Cerebral cysticercus arteritis: Five angiographic cases. Cerebrovasc Dis, 4, 125–33.Google Scholar
Murrell, K. D. 2005. WHO/FAO/OIE Guidelines for the Surveillance, Prevention and Control of Taeniosis/Cysticercosis. Paris: Office International des Epizooties.Google Scholar
Pittella, J. E. H. 1997. Neurocysticercosis. Brain Pathol, 7, 681–93.Google Scholar
Rocha, M. S. G., Brucki, S. M. D., Ferraz, A. C., and Piccolo, A. C. 2001. Doença cerebrovascular e neurocisticercose. Arq Neuropsiquiatr, 59, 778–83.Google Scholar
Rodriguez-Carbajal, J., Del Brutto, O. H., Penagos, P., Huebe, J., and Escobar, A. 1989. Occlusion of the middle cerebral artery due to cysticercotic angiitis. Stroke, 20, 1095–9.Google Scholar
Soto-Hernández, J. L., Gomez-Llata, S. A., Rojas-Echeverri, L. A., et al. 1996. Subarachnoid hemorrhage secondary to a ruptured inflammatory aneurysm. A possible complication of neurocysticercosis: Case report. Neurosurgery, 38, 197–9.Google Scholar
Tellez-Zenteno, J. F., Negrete-Pulido, O. R., Cantú, C., et al. 2003. Hemorrhagic stroke associated to neurocysticercosis. Neurología, 18, 272–5.Google Scholar
terPenning, B., Litchman, C. D., and Heier, L. 1992. Bilateral middle cerebral artery occlusions in neurocysticercosis. Stroke, 23, 280–3.Google Scholar
Trelles, J. O. and Ravens, R. 1953. Estudios sobre neurocisticercosis. II. Lesiones vasculares, meníngeas, ependimarias y neuró glicas. Revista de Neuro-Psiquiatría, 16, 241–70.Google Scholar
Viola, G. M., White, C. Jr., and Serpa, J. A. 2012. Hemorrhagic cerebrovascular events of neurocysticercosis: A case report and review of the literature. Am J Trop Med Hyg, 84, 402–5.Google Scholar
Wallin, M. T. and Kurtzke, J. F. 2004. Neurocysticercosis in the United States. Review of an important emerging infection. Neurology, 63, 1559–64.Google Scholar
Woo, E., Yu, Y. L., and Huang, C. Y. 1988. Cerebral infarct precipitated by praziquantel in neurocysticercosis: A cautionary note. Trop Geogr Neurol, 40, 143–6.Google Scholar
Wraige, E., Graham, J., Robb, S. A., and Jan, W. 2003. Neurocysticercosis masquerading as a cerebral infarct. J Child Neurol, 18, 298300.Google Scholar

References

Antonara, S., Ristow, L., and Coburn, J. (2011). Adhesion mechanisms of Borrelia burgdorferi. Adv Exp Med Biol 715: 3549.Google Scholar
Back, T., Grunig, S., Winter, Y., et al. (2013). Neuroborreliosis-associated cerebral vasculitis: Long-term outcome and health-related quality of life. J Neurol 260: 1569–75.Google Scholar
Banerjee, A., Kim, B. J., Carmona, E. M., et al. (2011). Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun 2: 462.Google Scholar
Berglund, J., Eitrem, R., Ornstein, K., et al. (1995). An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 333: 1319–27.Google Scholar
Bodilsen, J., Dalager-Pedersen, M., Schonheyder, H. C., and Nielsen, H. (2014). Stroke in community-acquired bacterial meningitis: A Danish population-based study. Int J Infect Dis 20: 1822.Google Scholar
Brogan, G. X., Homan, C. S., and Viccellio, P. (1990). The enlarging clinical spectrum of Lyme disease: Lyme cerebral vasculitis, a new disease entity. Ann Emerg Med 19: 572–6.Google Scholar
Brouqui, P., Bacellar, F., Baranton, G., et al. (2004). Guidelines for the diagnosis of tick-borne bacterial diseases in Europe. Clin Microbiol Infect 10: 1108–32.Google Scholar
CDC ( (2015a). Pneumococcal disease. Retrieved October 25, 2015 from http://www.cdc.gov/pneumococcal/clinicians/clinical-features.html.Google Scholar
CDC (2015b). Meningococcal Disease: Technical & Clinical Information. Retrieved October 25, 2015, 2015, from http://www.cdc.gov/meningococcal/clinical-info.html.Google Scholar
CDC (2015c). Group B strep (GBS). Retrieved October 25, 2015 from http://www.cdc.gov/groupbstrep/clinicians/clinical-overview.html.Google Scholar
CDC (2015d). Listeria (Listeriosis). Retrieved October 25, 2015, from http://www.cdc.gov/listeria/statistics.html.Google Scholar
Chehrenama, M., Zagardo, M., and Koski, C. (1997). Subarachnoid hemorrhage in a patient with Lyme disease. Neurology 48: 520–3.Google Scholar
Cheshier, R., Tu, E., Glaser, C., et al. (2003). Outbreaks of aseptic meningitis associated with echoviruses 9 and 30 and preliminary surveillance reports on enterovirus activity – United States, 2003. MMWR 52: 761–4.Google Scholar
Corral, I., Quereda, C., Guerrero, A., Escudero, R., and Marti-Belda, P. (1997). Neurological manifestations in patients with sera positive for Borrelia burgdorferi. Neurologia 12: 28.Google Scholar
Cox, M. G., Wolfs, T. F., Lo, T. H., Kappelle, L. J., and Braun, K. P. (2005). Neuroborreliosis causing focal cerebral arteriopathy in a child. Neuropediatrics 36: 104–7.Google Scholar
Deloizy, M., Devos, P., Stekelorom, T., Testard, D., and Belhadia, A. (2000). Left sided sudden hemiparesis linked to a central form of Lyme disease. Rev Neurol (Paris) 156: 1154–6.Google Scholar
Halperin, J. J. (2003). Lyme disease and the peripheral nervous system. Muscle & Nerve 28: 133–43.Google Scholar
Halperin, J., Logigian, E., Finkel, M., and Pearl, R. (1996). Practice parameter for the diagnosis of patients with nervous system Lyme borreliosis (Lyme disease). Neurology 46: 619–27.Google Scholar
Hammers-Berggren, S., Grondahl, A., Karlsson, M., et al. (1993). Screening for neuroborreliosis in patients with stroke. Stroke 24: 1393–6.Google Scholar
Hanny, P. E. and Hauselmann, H. J. (1987). Die Lyme-Krankheit aus der Sicht des Neurologen. Schwiez med Wsch 117: 901–15.Google Scholar
Heinrich, A., Khaw, A. V., Ahrens, N., Kirsch, M., and Dressel, A. (2003). Cerebral vasculitis as the only manifestation of Borrelia burgdorferi infection in a 17-year-old patient with basal ganglia infarction. Eur Neurol 50: 109–12.Google Scholar
Henriksen, T. B. (1997). Lyme neuro-borreliosis in a 66-year old women. Differential diagnosis of cerebral metastases and cerebral infarction. Ugeskr Laeger 159: 3175–7.Google Scholar
Jacobi, C., Schwark, C., Kress, B., et al. (2006). Subarachnoid hemorrhage due to Borrelia burgdorferi-associated vasculitis. Eur J Neurol 13: 536.Google Scholar
Kastenbauer, S. and Pfister, H. W. (2003). Pneumococcal meningitis in adults: Spectrum of complications and prognostic factors in a series of 87 cases. Brain 126: 1015–25.Google Scholar
Keil, R., Baron, R., Kaiser, R., and Deuschl, G. (1997). Vasculitis course of neuroborreliosis with thalamic infarct. Nervenarzt 68: 339–41.Google Scholar
Klein, M., Koedel, U., Pfefferkorn, T., et al. (2011). Arterial cerebrovascular complications in 94 adults with acute bacterial meningitis. Crit Care 15: R281.Google Scholar
Klingebiel, R., Benndorf, G., Schmitt, M., von Moers, A., and Lehmann, R. (2002). Large cerebral vessel occlusive disease in Lyme neuroborreliosis. Neuropediatrics 33: 3740.Google Scholar
Koedel, U., Scheld, W. M., and Pfister, H. W. (2002). Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2: 721–36.Google Scholar
Kohler, J., Kern, U., Kasper, J., Rhese-Kupper, B., and Thoden, U. (1988). Chronic central nervous system involvement in Lyme borreliosis. Neurology 38: 863–7.Google Scholar
Kurian, M., Pereira, V. M., Vargas, M. I., and Fluss, J. (2015). Stroke-like phenomena revealing multifocal cerebral vasculitis in pediatric Lyme neuroborreliosis. J Child Neurol 30: 1226–9.Google Scholar
Laroche, C., Lienhardt, A., and Boulesteix, J. (1999). Ischemic stroke caused by neuroborreliosis. Arch Pediatr 6: 1302–5.Google Scholar
Lebas, A., Toulgoat, F., Saliou, G., Husson, B., and Tardieu, M. (2012). Stroke due to Lyme neuroborreliosis: Changes in vessel wall contrast enhancement. J Neuroimaging 22: 210–12.Google Scholar
Li, S., Vytopil, M., Hreib, K., and Craven, D. E. (2015). Lyme disease presenting as multiple ischaemic strokes. Pract Neurol 15: 284–8.Google Scholar
May, E. F. and Jabbari, B. (1990). Stroke in neuroborreliosis. Stroke 21: 1232–5.Google Scholar
Midgard, R. and Hofstad, H. (1987). Unusual manifestations of nervous system Borrelia burgdorferi infection. Arch Neurol 44: 781–3.Google Scholar
Mygland, A., Ljostad, U., Fingerle, V., et al. (2010). EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol 17: 816, e1114.Google Scholar
Nagel, M. A. and Gilden, D. (2015). The relationship between herpes zoster and stroke. Curr Neurol Neurosci Rep 15: 16.Google Scholar
Oksi, J., Kalimo, H., Marttila, R. J., et al. (1996). Inflammatory brain changes in Lyme borreliosis. A report on three patients and review of literature. Brain 119: 2143–54.Google Scholar
Oksi, J., Kalimo, H., Marttila, R. J., et al. (1998). Intracranial aneurysms in three patients with disseminated Lyme borreliosis: Cause or chance association? J Neurol Neurosurg Psychiatry 64: 636–42.Google Scholar
Olarte, L., Barson, W. J., Barson, R. M., et al. (2015). Impact of the 13-valent pneumococcal conjugate vaccine on pneumococcal meningitis in US children. Clin Infect Dis 61: 767–75.Google Scholar
Olsson, J. E. and Zbornikova, V. (1990). Neuroborreliosis simulating a progressive stroke. Acta Neurol Scand 81: 471–4.Google Scholar
Orihuela, C. J., Mahdavi, J., Thornton, J., et al. (2009). Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119: 1638–46.Google Scholar
Reik, L. Jr. (1993). Stroke due to Lyme disease. Neurology 43: 2705–7.Google Scholar
Renard, C., Marignier, S., Gillet, Y., et al. (2008). Acute hemiparesis revealing a neuroborreliosis in a child. Arch Pediatr 15: 41–4.Google Scholar
Rey, V., Du Pasquier, R., Muehl, A., Peter, O., and Michel, P. (2010). Multiple ischemic strokes due to Borrelia garinii meningovasculitis. Rev Neurol (Paris) 166: 931–4.Google Scholar
Roberts, E. D., Bohm, R. P. Jr., Lowrie, R. C. Jr., et al. (1998). Pathogenesis of Lyme neuroborreliosis in the rhesus monkey: The early disseminated and chronic phases of disease in the peripheral nervous system. J Infect Dis 178: 722–32.Google Scholar
Romi, F., Krakenes, J., Aarli, J. A., and Tysnes, O. B. (2004). Neuroborreliosis with vasculitis causing stroke-like manifestations. Eur Neurol 51: 4950.Google Scholar
Roos, K. J., Tunkel, A. R., van de Beek, D., and Scheld, M. (2014). Acute bacterial meningitis. In Infections of the Central Nervous Systtem, eds. Scheld, M., Whitley, J. W. and Marra, C. M.. Philadelphia: Wolters Kluwer Health.Google Scholar
Scheid, R., Hund-Georgiadis, M., and von Cramon, D. Y. (2003). Intracerebral haemorrhage as a manifestation of Lyme neuroborreliosis? Eur J Neurol 10: 99101.Google Scholar
Schmiedel, J., Gahn, G., von Kummer, R., and Reichmann, H. (2004). Cerebral vasculitis with multiple infarcts caused by Lyme disease. Cerebrovasc Dis 17: 7981.Google Scholar
Schmitt, A. B., Kuker, W., and Nacimiento, W. (1999). Neuroborreliosis with extensive cerebral vasculitis and multiple cerebral infarcts. Nervenarzt 70: 167–71.Google Scholar
Schoen, F. J. (2005). Blood vessels. In Robbins & Cotran, Pathologic Basis of Disease, eds. Kumar, V., Abbas, A. K. and Fausto, N.. Elsevier Saunders: pp. 511537.Google Scholar
Schuchat, A. (1998). Epidemiology of group B streptococcal disease in the United States: Shifting paradigms. Clin Microbiol Rev 11: 497513.Google Scholar
Schut, E. S., Brouwer, M. C., de Gans, J., et al. (2009). Delayed cerebral thrombosis after initial good recovery from pneumococcal meningitis. Neurology 73: 1988–95.Google Scholar
Seijo Martinez, M., Grandes Ibanez, J., Sanchez Herrero, J., and Garcia-Monco, J. C. (2001). Spontaneous brain hemorrhage associated with Lyme neuroborreliosis. Neurologia 16: 43–5.Google Scholar
Smeeth, L., Thomas, S. L., Hall, A. J., et al. (2004). Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 351: 2611–18.Google Scholar
Sparsa, L., Blanc, F., Lauer, V., et al. (2009). Recurrent ischemic strokes revealing Lyme meningovascularitis. Rev Neurol (Paris) 165: 273–7.Google Scholar
Thigpen, M. C., Whitney, C. G., Messonnier, N. E., et al. (2011). Bacterial meningitis in the United States, 1998–2007. N Engl J Med 364: 2016–25.Google Scholar
Topakian, R., Stieglbauer, K., Nussbaumer, K., and Aichner, F. T. (2008). Cerebral vasculitis and stroke in Lyme neuroborreliosis. Two case reports and review of current knowledge. Cerebrovasc Dis 26: 455–61.Google Scholar
Uldry, P. A., Regli, F., and Bogousslavsky, J. (1987). Cerebral angiopathy and recurrent strokes following Borrelia burgdorferi infection. J Neurol Nsurg & Psych 50: 1703–4.Google Scholar
Van Snick, S., Duprez, T. P., Kabamba, B., Van De Wyngaert, F. A., and Sindic, C. J. (2008). Acute ischaemic pontine stroke revealing lyme neuroborreliosis in a young adult. Acta Neurol Belg 108: 103–6.Google Scholar
Veenendaal-Hilbers, J. A., Perquin, W. V., Hoogland, P. H. and Doornbos, L. (1988). Basal meningovasculitis and occlusion of the basilar artery in two cases of Borrelia burgdorferi infection. Neurology 38: 1317–19.Google Scholar
Walsh, J. G., Muruve, D. A., and Power, C. (2014). Inflammasomes in the CNS. Nat Rev Neurosci 15: 8497.Google Scholar
Wilke, M., Eiffert, H., Christen, H. J., and Hanefeld, F. (2000). Primarily chronic and cerebrovascular course of Lyme neuroborreliosis: Case reports and literature review. Arch Dis Child 83: 6771.Google Scholar
Wittwer, B., Pelletier, S., Ducrocq, X., et al. (2015). Cerebrovascular events in Lyme neuroborreliosis. J Stroke Cerebrovasc Dis 24: 1671–8.Google Scholar
Wormser, G. P., Dattwyler, R. J., Shapiro, E. D., et al. (2006). The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 43: 1089–134.Google Scholar
Zhang, Y., Lafontant, G., and Bonner, F. J. Jr. (2000). Lyme neuroborreliosis mimics stroke: A case report. Arch Phys Med Rehabil 81: 519–21.Google Scholar

References

Kawasaki, T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 16, 178222 (1967).Google Scholar
Bell, D. M., Morens, D. M., Holman, R. C., Hurwitz, E. S., & Hunter, M. K. Kawasaki syndrome in the United States 1976 to 1980. Am J Dis Child 137, 211–14 (1983).Google Scholar
Ferro, J. M. Vasculitis of the central nervous system. J Neurol 245, 766–76 (1998).Google Scholar
Morens, D. M. & O’Brien, R. J. Kawasaki disease in the United States. J Infect Dis 137, 9193 (1978).Google Scholar
Amano, S. & Hazama, F. Neural involvement in Kawasaki disease. Acta Pathol Jpn 30, 365–73 (1980).Google Scholar
Amano, S., Hazama, F., & Hamashima, Y. Pathology of Kawasaki disease: II. Distribution and incidence of the vascular lesions. Jpn Circ J 43, 741–8 (1979).Google Scholar
Tanaka, S., Sagiuchi, T., & Kobayashi, I. Ruptured pediatric posterior cerebral artery aneurysm 9 years after the onset of Kawasaki disease: A case report. Childs Nerv Syst 23, 701–6 (2007).Google Scholar
Shulman, S. T. & Rowley, A. H. Etiology and pathogenesis of Kawasaki disease. Progress in Pediatric Cardiology 6, 187–92 (1997).Google Scholar
Yanagawa, H., et al. Incidence survey of Kawasaki disease in 1997 and 1998 in Japan. Pediatrics 107, E33 (2001).Google Scholar
Yanagawa, H., et al. Incidence of Kawasaki disease in Japan: The nationwide surveys of 1999–2002. Pediatr Int 48, 356–61 (2006).Google Scholar
Burns, J. C., et al. Kawasaki disease: A brief history. Pediatrics 106, E27 (2000).Google Scholar
Kawasaki, T., Kosaki, F., Okawa, S., Shigematsu, I., & Yanagawa, H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 54, 271–6 (1974).Google Scholar
Newburger, J. W., et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114, 1708–33 (2004).Google Scholar
Cheung, Y. F., et al. Inflammatory gene polymorphisms and susceptibility to Kawasaki disease and its arterial sequelae. Pediatrics 122, e60814 (2008).Google Scholar
Jackson, J. L., Kunkel, M. R., Libow, L., & Gates, R. H. Adult Kawasaki disease. Report of two cases treated with intravenous gamma globulin. Arch Intern Med 154, 1398–405 (1994).Google Scholar
Rauch, A. M. Kawasaki syndrome: Issues in etiology and treatment. Adv Pediatr Infect Dis 4, 163–82 (1989).Google Scholar
Chang, R. K. Hospitalizations for Kawasaki disease among children in the United States, 1988–1997. Pediatrics 109, e87 (2002).Google Scholar
Dillon, M. J. & Ozen, S. A new international classification of childhood vasculitis. Pediatr Nephrol 21, 1219–22 (2006).Google Scholar
Ozen, S., et al. EULAR/PReS endorsed consensus criteria for the classification of childhood vasculitides. Ann Rheum Dis 65, 936–41 (2006).Google Scholar
Amano, S., Hazama, F., & Hamashima, Y. Pathology of Kawasaki disease: I. Pathology and morphogenesis of the vascular changes. Jpn Circ J 43, 633–43 (1979).Google Scholar
Amano, S., et al. General pathology of Kawasaki disease. On the morphological alterations corresponding to the clinical manifestations. Acta Pathol Jpn 30, 681–94 (1980).Google Scholar
Mason, W. H., Burns, J. C. Clinical presentation of Kawasaki disease. Progress in Pediatric Cardiology 6, 193201 (1997).Google Scholar
Dajani, A. S., et al. Diagnosis and therapy of Kawasaki disease in children. Circulation 87, 1776–80 (1993).Google Scholar
Newburger, J. W., et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 110, 2747–71 (2004).Google Scholar
Newburger, J. W., Burns, J. C., Beiser, A. S., & Loscalzo, J. Altered lipid profile after Kawasaki syndrome. Circulation 84, 625–31 (1991).Google Scholar
Dengler, L. D., et al. Cerebrospinal fluid profile in patients with acute Kawasaki disease. Pediatr Infect Dis J 17, 478–81 (1998).Google Scholar
Tabarki, B., Mahdhaoui, A., Selmi, H., Yacoub, M., & Essoussi, A. S. Kawasaki disease with predominant central nervous system involvement. Pediatr Neurol 25, 239–41 (2001).Google Scholar
Terasawa, K., Ichinose, E., Matsuishi, T., & Kato, H. Neurological complications in Kawasaki disease. Brain Dev 5, 371–4 (1983).Google Scholar
Bailie, N. M., Hensey, O. J., Ryan, S., Allcut, D., & King, M.D. Bilateral subdural collections–an unusual feature of possible Kawasaki disease. Eur J Paediatr Neurol 5, 7981 (2001).Google Scholar
Fujiwara, S., Yamano, T., Hattori, M., Fujiseki, Y., & Shimada, M. Asymptomatic cerebral infarction in Kawasaki disease. Pediatr Neurol 8, 235–6 (1992).Google Scholar
Knott, P. D., Orloff, L. A., Harris, J. P., Novak, R. E., & Burns, J.C. Sensorineural hearing loss and Kawasaki disease: A prospective study. Am J Otolaryngol 22, 343–8 (2001).Google Scholar
Koutras, A. Myositis with Kawasaki’s disease. Am J Dis Child 136, 78–9 (1982).Google Scholar
Lapointe, J. S., Nugent, R. A., Graeb, D. A., & Robertson, W. D. Cerebral infarction and regression of widespread aneurysms in Kawasaki’s disease: Case report. Pediatr Radiol 14, 15 (1984).Google Scholar
Laxer, R. M., Dunn, H. G., & Flodmark, O. Acute hemiplegia in Kawasaki disease and infantile polyarteritis nodosa. Dev Med Child Neurol 26, 814–18 (1984).Google Scholar
Suda, K., Matsumura, M., & Ohta, S. Kawasaki disease complicated by cerebral infarction. Cardiol Young 13, 103–5 (2003).Google Scholar
Tanaka, S., Sagiuchi, T., & Kobayashi, I. Ruptured pediatric posterior cerebral artery aneurysm 9 years after the onset of Kawasaki disease: A case report. Childs Nerv Syst 23, 701–6 (2007).Google Scholar
Templeton, P. A. & Dunne, M. G. Kawasaki syndrome: Cerebral and cardiovascular complications. J Clin Ultrasound 15, 483–5 (1987).Google Scholar
Wada, Y., Kamei, A., Fujii, Y., Ishikawa, K., & Chida, S. Cerebral infarction after high-dose intravenous immunoglobulin therapy for Kawasaki disease. J Pediatr 148, 399400 (2006).Google Scholar
Sabatier, I., et al. Stroke by carotid artery complete occlusion in Kawasaki disease: Case report and review of literature. Pediatr Neurol 49, 469–73 (2013).Google Scholar
Boespflug, O., Tardieu, M., Losay, J., & Leroy, D. Acute hemiplegia complicating Kawasaki disease. Rev Neurol (Paris) 140, 507–9 (1984).Google Scholar
Hosaki, J., Abe, S., Shoback, B. R., Yoshimatu, A., & Migita, T. Mucocutaneous lymph node syndrome with various arterial lesions. Helv Paediatr Acta 33, 127–33 (1978).Google Scholar
Lauret, P., Lecointre, C., & Billard, J. L. Kawasaki disease complicated by thrombosis of the internal carotid artery. Ann Dermatol Venereol 106, 901–5 (1979).Google Scholar
Beiser, A. S., Takahashi, M., Baker, A. L., Sundel, R. P., & Newburger, J. W. A predictive instrument for coronary artery aneurysms in Kawasaki disease. US Multicenter Kawasaki Disease Study Group. Am J Cardiol 81, 1116–20 (1998).Google Scholar
Muneuchi, J., et al. Magnetic resonance studies of brain lesions in patients with Kawasaki disease. Brain Dev 28, 30–3 (2006).Google Scholar
Ahn, J. H., Phi, J. H., Kang, H. S. et al., J Neurosurg Pediatric 6, 150153 (2010).Google Scholar
Ichiyama, T., et al. Cerebral hypoperfusion during acute Kawasaki disease. Stroke 29, 1320–1 (1998).Google Scholar
Sato, T., et al. Kawasaki disease-associated MERS: Pathological insights from SPECT findings. Brain Dev 34, 605–8 (2012).Google Scholar
Takanashi, J., et al. Kawasaki disease complicated by mild encephalopathy with a reversible splenial lesion (MERS). J Neurol Sci 315, 167–9 (2012).Google Scholar
Benseler, S. M., et al. Primary central nervous system vasculitis in children. Arthritis Rheum 54, 1291–7 (2006).Google Scholar
Kato, H., Koike, S., & Yokoyama, T. Kawasaki disease: Effect of treatment on coronary artery involvement. Pediatrics 63, 175–9 (1979).Google Scholar
Newburger, J. W., et al. Randomized trial of pulsed corticosteroid therapy for primary treatment of Kawasaki disease. N Engl J Med 356, 663–75 (2007).Google Scholar
Newburger, J. W., et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med 315, 341–7 (1986).Google Scholar
Newburger, J. W., et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med 324, 1633–9 (1991).Google Scholar
Furusho, K., et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet 2, 1055–8 (1984).Google Scholar
Sundel, R. & Newburger, J. W. Management of acute Kawasaki disease. Progress in Pediatric Cardiology 6, 203–9 (1997).Google Scholar
Alehan, F. K., Boyvat, F., Baskin, E., Derbent, M., & Ozbek, N. Focal cerebral vasculitis and stroke after chickenpox. Eur J Paediatr Neurol 6, 331–3 (2002).Google Scholar
deVeber, G., Roach, E. S., Riela, A. R., & Wiznitzer, M. Stroke in children: Recognition, treatment, and future directions. Semin Pediatr Neurol 7, 309–17 (2000).Google Scholar
Takeoka, M. & Takahashi, T. Infectious and inflammatory disorders of the circulatory system and stroke in childhood. Curr Opin Neurol 15, 159–64 (2002).Google Scholar
Israels, S. J. & Michelson, A. D. Antiplatelet therapy in children. Thromb Res 118, 7583 (2006).Google Scholar
Bayers, S., Shulman, S. T., & Paller, A. S. Kawasaki disease: Part II. Complications and treatment. J Am Acad Dermatol 69, 513 e511518 (2013).Google Scholar

References

Antunes, AF, Maduro, SG, Pereira, BV, et al. Chronic heart disease after treatment of oral acute Chagas disease. Arq Bras Cardiol 2016;107:184–6.Google Scholar
Aras, R, da Matta, JA, Mota, G, et al. Cerebral infarction in autopsies of chagasic patients with heart failure. Arq Bras Cardiol 2003;81:414–16.Google Scholar
Aufderheide, AC, Salo, W, Madden, M, et al. A 9,000 year record of Chagas’ disease. Proc Natl Acad Sci USA 2004;101:2034–9.Google Scholar
Basquiera, AL, Sembaj, A, Aguerri, AM, et al. Risk progression to chronic Chagas cardiomyopathy: Influence of male sex and of parasitaemia detected by polymerase chain reaction. Heart 2003;89:1186–90.Google Scholar
Belisario Falchetto, E, Costa, SC, Rochitte, CE. Diagnostic challenges of Chagas cardiomyopathy and CMR imaging. Glob Heart 2015;10:181–7.Google Scholar
Benaim, G, Paniz Mondolfi, AE. The emerging role of amiodarone and dronedarone in Chagas disease. Nat Rev Cardiol 2012;9:605–9.Google Scholar
Benedictus, MR, Leeuwis, AE, Binnewijzend, MA, et al. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur Radiol 2016; in press.Google Scholar
Benvenuti, LA, Roggério, A, Freitas, HF, et al. Chronic American trypanosomiasis: Parasite persistence in endomyocardial biopsies is associated with high-grade myocarditis. Ann Trop Med Parasitol 2008;102:481–7.Google Scholar
Bern, C. Chagas disease in the immunosuppressed host. Cur Opin Infect Dis 2012;25:450–7.Google Scholar
Bern, C. Chagas’ disease. N Engl J Med 2015;373:456–66.Google Scholar
Bern, C, Montgomery, SP. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 2009;49:e524.Google Scholar
Bern, C, Martin, DL, Gilman, RH. Acute and congenital Chagas disease. Adv Parasitol 2011;75:1947.Google Scholar
Bestetti, RB, Freitas, OC, Muccillo, G, et al. Clinical and morphological characteristics associated with sudden cardiac death in patients with Chagas’ disease. Eur Heart J 1993;14:1610–14.Google Scholar
Bestetti, RB, Restini, CB, Couto, LB. Carlos Chagas discoveries as a drop back to scientific construction of chronic Chagas heart disease. Arq Bras Cardiol 2016;107:6370.Google Scholar
Braga, J, Labrunie, A, Villaça, F, et al. Thromboembolism in chronic Chagas’ heart disease. São Paulo Med J 1995;113:862–6.Google Scholar
Braga, JC, Reis, F, Aras, R, et al. Clinical and therapeutics aspects of heart failure due to Chagas disease. Arq Bras Cardiol 2006;86:297302.Google Scholar
Braggion-Santos, MF, Volpe, GJ, Pazin-Filho, A, et al. Sudden cardiac death in Brazil: A community-based autopsy series (2006–2010). Arq Bras Cardiol 2015;104:120–7.Google Scholar
Cardoso, AV, Lescano, SA, Amato Neto, V, et al. Survival of Trypanosoma cruzi in sugar cane used to prepare juice. Rev Inst Med Trop Sao Paulo 2006;48:287–9.Google Scholar
Carod-Artal, FJ. Stroke: A neglected complication of American trypanosomiasis (Chagas’ disease). Trans R Soc Trop Med Hyg 2007;1–1:1075–80.Google Scholar
Carod-Artal, FJ. Policy implications of the changing epidemiology of Chagas disease and stroke. Stroke 2013;44:2356–60.Google Scholar
Carod-Artal, FJ, Vargas, AP, Melo, M, et al. American trypanosomiasis (Chagas’ disease): An unrecognized cause of stroke. J Neurol Neurosurg Psychiatry 2003;74:516–18.Google Scholar
Carod-Artal, FJ, Vargas, AP, Horan, TA, et al. Chagasic cardiomyopathy is independently associated with ischemic stroke in Chagas disease. Stroke 2005;36:965–70.Google Scholar
Chagas, C. Nova tripanozomiaze humana. Estudo sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n.gen. n.sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1909; 1:159218.Google Scholar
Cougo-Pinto, PT, dos Santos, BL, Dias, FA, et al. Safety of IV thrombolysis in acute ischemic stroke related to Chagas disease. Neurology 2013;81:1773–5.Google Scholar
Corral, RS, Guerrero, NA, Cuervo, H, et al. Trypanosoma cruzi infection and endothelin-1 cooperatively activate pathogenic inflammatory pathways in cardiomyocytes. PLoS Negl Trop Dis 2013;7:e2034.Google Scholar
da Matta, JA, Aras, R Jr, de Macedo, CR, et al. Stroke correlates in chagasic and non-chagasic cardiomyopathies. PLoS One 2012;7:e35116.Google Scholar
de Andrade, AL de, Zicker, F, de Oliveira, RM, et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 1996;348:1407–13.Google Scholar
Dias, JC. The indeterminate form of human chronic Chagas’ disease. A clinical epidemiological review. Rev Soc Bras Med Trop 1989;22:147–56.Google Scholar
Dias, JC. Evolution of Chagas disease screening programs and control programs: Historical perspective. Glob Heart 2015;10:193202.Google Scholar
Dias, JC, Silveira, AC, Schofield, CJ. The impact of Chagas disease control in Latin America: A review. Mem Inst Oswaldo Cruz 2002;97:603–12.Google Scholar
Dias, JO Jr, da Costa Rocha, MO, de Souza, AC, et al. Assessment of the source of ischemic cerebrovascular events in patients with Chagas disease. Int J Cardiol 2014;176:1352–4.Google Scholar
Forsyth, CJ, Hernandez, S, Olmedo, W et al. Safety profile of nifurtimox for treatment of Chagas disease in the United States. Clin Infect Dis 2016;63:1056–62.Google Scholar
Gurgel, CB, Ferreira, MC, Mendes, CR, et al. Apical lesions in Chagas’ heart disease patients: An autopsy study. Rev Soc Bras Med Trop 2010;43:709–12.Google Scholar
Jesus, PA, Neville, I, Cincura, C, et al. Stroke history and Chagas disease are independent predictors of silent cerebral microembolism in patients with congestive heart failure. Cerebrovasc Dis 2011;31:1923.Google Scholar
Kalil Filho, R, de Albuquerque, CP. Magnetic resonance imaging in Chagas heart disease. São Paulo Med J 1995;113:880–3.Google Scholar
Kuehn, BM. Chagas heart disease an emerging concern in the United States. Circulation 2016;134:895–6.Google Scholar
Lee-Felker, SA, Thomas, M, Felker, ER, et al. Value of cardiac MRI for evaluation of chronic Chagas disease cardiomyopathy. Clin Radiol 2016;71:618.e17.Google Scholar
Lewis, MD, Kelly, JM. Putting infection dynamics at the heart of Chagas disease. Trends Parasitol 2016 epub ahead of print.Google Scholar
Lorga Filho, AM, Azmus, AD, Soeiro, AM, et al. Brazilian guidelines on platelet antiaggregants and anticoagulants in cardiology. Arq Bras Cardiol 2013;10 (Suppl 3): 195.Google Scholar
Mady, C, Cardoso, RHA, Barretto, AC et al. Survival and predictors of survival in patients with congestive heart failure due to Chagas’ cardiomyopathy. Circulation 1994;90:3098–102.Google Scholar
Marcolino, MS, Palhares, DM, Ferreira, LR, et al. Electrocardiogram and Chagas disease: A large population database of primary care patients. Glob Heart 2015;10:167–72.Google Scholar
Martí-Carvajal, AJ, Kwong, JS. Pharmacological interventions for treating heart failure in patients with Chagas cardiomyopathy. Cochrane Database Syst Rev 2016;7:CD009077Google Scholar
Massaro, AR, Dutra, AP, Almeida, DR, et al. Transcranial Doppler assessment of cerebral blood flow: Effect of cardiac transplantation. Neurology 2006;66:124–6.Google Scholar
Miles, MA, Feliciangeli, MD, de Arias, AR. American trypanosomiasis (Chagas’ disease) and the role of molecular epidemiology in guiding control strategies. BMJ 2003;326:1444–8.Google Scholar
Montanaro, VV, da Silva, CM, de Viana Santos, CV, et al. Ischemic stroke classification and risk of enosis in patients with Chagas disease. J Neurol 2016; 263:2411–15.Google Scholar
Morel, CM. Chagas disease, from discovery to control – and beyond: History, myths and lessons to take home. Mem Inst Oswaldo Cruz 1999;94 Suppl 1:316.Google Scholar
Morillo, CA, Marin-Neto, JA, Avezum, A, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 2015;373(14):1295–306.Google Scholar
Nunes, MC, Barbosa, MM, Ribeiro, AL, et al. Ischemic cerebrovascular events in patients with Chagas cardiomyopathy: A prospective follow-up study. J Neurol Sci 2009;278:96101.Google Scholar
Nunes, MC, Dones, W, Morillo, CA, et al. Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol 2013;62:767–76.Google Scholar
Nunes, MC, Kreuser, LJ, Ribeiro, AL, et al. Prevalence and risk factors of embolic cerebrovascular events associated with Chagas heart disease. Glob Heart 2015;10:151–7.Google Scholar
Oliveira-Filho, J, Viana, LC, Vieira de Melo, RM et al. Chagas disease is an independent risk factor for stroke: Baseline characteristics of Chagas disease cohort. Stroke 2005;36:2015–17.Google Scholar
Oliveira-Filho, J, Vieira-de-Melo, RM, Reis, PS, et al. Chagas disease is independently associated with brain atrophy. J Neurol 2009;256:1363–5.Google Scholar
Paixão, LC, Ribeiro, AL, Valacio, RA, et al. Chagas disease: Independent risk factor for stroke. Stroke 2009;40:3691–4.Google Scholar
Pazin-Filho, A, Romano, MM, Almeida-Filho, OC, et al. Minor segmental wall motion abnormalities detected in patients with Chagas’ disease have adverse prognostic implications. Braz J Med Biol Res 2006;39:483–7.Google Scholar
Peix, A, Garcia, R, Sánchez, J, et al. Myocardial perfusion imaging and cardiac involvement in the inderminate phase of Chagas disease. Arq Bras Cardiol 2013;100:114–17.Google Scholar
Pirard, M, Iihoshi, N, Boelaert, M, et al. The validity of serologic test for Trypanosoma cruzi and the effectiveness of transfusional screening strategies in a hyperendemic region. Transfusion 2005;45:554–61.Google Scholar
Pitella, JE. Ischemic cerebral changes in the chronic chagasic cardiopathy. Arq Neuropsiquiatr 1984;42:105–15.Google Scholar
Prata, A. Evolution of the clinical and epidemiological knowledge about Chagas disease 90 years after its discovery. Mem Inst Oswaldo Cruz 1999;94: Suppl 1:81–8.Google Scholar
Rassi, A Jr, Rassi, A, Little, WC, et al. Development and validation of a risk score for predicting death in Chagas’ heart disease. N Engl J Med 2006;355:799808.Google Scholar
Rassi, A Jr, Rassi, A, Marin-Neto, JA. Chagas disease. Lancet 2010;375:1388–402.Google Scholar
Rassi, DC, Vieira, ML, Arruda, AL, et al. Echocardiographic parameters and survival in Chagas heart disease with severe systolic dysfunction. Arq Bras Cardiol 2014;102:245–52.Google Scholar
Regueiro, A, García-Álvarez, A, Sitges, M, et al. Myocardial involvement in Chagas disease: Insights from cardiac magnetic resonance. Int J Cardiol 2013;165:107–12.Google Scholar
Requena-Méndez, A, Aldasoro, E, de Lazzari, E, et al. Prevalence of Chagas disease in Latin-American migrants living in Europe: A systematic review and meta-analysis. PLoS Negl Trop Dis 2015. February 13;9:e0003540Google Scholar
Requena-Méndez, A, Moore, DA, Subirà, C, et al. Addressing the neglect: Chagas disease in London, UK. Lancet Glob Health 2016;4:e2313.Google Scholar
Ribeiro, AL, Rocha, MO. Indeterminate form of Chagas disease: Considerations about diagnosis and prognosis. Rev Soc Bras Med Trop 1998;31:301–14.Google Scholar
Rochitte, CE, Oliveira, PF, Andrade, JM, et al. Myocardial delayed enhancement by magnetic resonance imaging in patients with Chagas’ disease: A marker of disease severity. J Am Coll Cardiol 2005;46:1553–8.Google Scholar
Rothhammer, F, Allison, MJ, Núñez, L, et al. Chagas’ disease in pre-Columbian South America. Am J Phys Anthropol 1985;68:495–8.Google Scholar
Samuel, J, Oliveira, M, Correa de Araújo, RR, et al. Cardiac thrombosis and thromboembolism in chronic Chagas’ heart disease. Am J Cardiol 1983;52:147–51.Google Scholar
Schmunis, GA, Yadon, ZE. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop 2010;115:1421.Google Scholar
Sousa, AS, Xavier, SS, de Freitas, FR, et al. Prevention strategies of cardioembolic ischemic stroke in Chagas disease. Arq Bras Cardiol 2008;91:280–4.Google Scholar
Trabuco, CC, Pereira de Jesus, PA, Bacellar, AS, et al. Successful thrombolysis in cardioembolic stroke from Chagas disease. Neurology 2005;64:170–1.Google Scholar
Torreão, JA, Ianni, BM, Mady, C, et al. Myocardial tissue characterization in Chagas’ heart disease by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015;17:97.Google Scholar
Vilas Boas, LG, Bestetti, RB, Otaviano, AP, et al. Outcome of Chagas cardiomyopathy in comparison to ischemic cardiomyopathy. Int J Cardiol 2013;167:486–90.Google Scholar
Viotti, RJ, Vigliano, C, Laucella, S, et al. Value of echocardiography for diagnosis and prognosis of chronic Chagas disease cardiomyopathy without heart failure. Heart 2004;90:655–60.Google Scholar
Walsh, JF, Molyneux, DH, Birley, MH. Deforestation: Effects on vector-borne disease. Parasitology 1993;106 (Suppl): S5575.Google Scholar
World Health Organization (WHO). Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 2015;90:3343.Google Scholar
Yadon, ZE, Schmunis, GA. Congenital Chagas disease: Estimating the potential risk in the United States. Am J Trop Med Hyg 2009;81:927–33.Google Scholar

References

Abuaf, N., Laperche, S., Rajoely, B., et al. 1997. Auto antibodies to phospholipid and to the coagulation proteins in AIDS. Thromb Haemost, 77, 856–61.Google Scholar
Ake, J. A., Erikson, J. C., and Lowry, K. J. 2006. Cerebral aneurysmal arteriopathy associated with HIV infection in an adult. Clin Infect Dis, 43, e4650.Google Scholar
Allie, S., Stanley, A., Bryer, A., Meiring, M., and Combrinck, M. I. 2015. High levels of von Willebrand factor and low levels of its cleaving protease, ADAMTS13, are associated with stroke in young HIV-infected patients. Int J Stroke, 10, 1294–6.Google Scholar
Anders, K. H., Guerra, W. F., Tomiyasu, U., Verity, M. A., and Vinters, H. V. 1986. The neuropathology of AIDS: UCLA experience and review. Am J Pathol, 124, 537–58.Google Scholar
Benjamin, L. A., Corbett, E. L., Connor, M.D., et al. 2016. HIV, antiretroviral treatment, hypertension and stroke in Malawian adults: A case-control study. Neurology, 86, 110.Google Scholar
Berger, J. R. 2004. AIDS and stroke risk. Lancet Neurol, 3, 206–7.Google Scholar
Berger, J. R., Harris, J. O., Gregarios, J., and Norenberg, M. 1990. Cerebrovascular disease in AIDS: A case control study. AIDS, 4, 239–44.Google Scholar
Bissuel, F., Berruyer, M., and Causse, X. 1992. Acquired protein S deficiency: Correlation with advanced disease in HIV-1 infected patients. J Acquir Immune Defic Syndr, 5, 484–9.Google Scholar
Budka, H. 1989. Human immunodeficiency virus (HIV)-induced disease of the central nervous system: Pathology and implications for pathogenesis. Acta Neuropathol, 77, 225–36.Google Scholar
Budka, H., Costanzi, G., and Cristina, S. 1987. Brain pathology induced by infection with the human immunodeficiency virus (HIV): A histological, immunocytochemical and electron microscopical study of 100 autopsy cases. Acta Neuropathol (Berlin), 75, 185–98.Google Scholar
Burkholder, G. A., Tamhane, A. R., Salinas, J. L., et al. 2012. Underutilization of aspirin for primary prevention of cardiovascular disease among HIV-infected patients. Clinical Infectious Diseases, 55, 11, 1550–7.Google Scholar
Calabrese, L. H. 1991. Vasculitis and infection with the human immunodeficiency virus. Rheum Dis Clin North Am, 17, 131–47.Google Scholar
Casado Naranjo, I., Toledo Santos, J. A., and Antolin Rodriguez, M. A. 1992. Ischemic stroke as the sole manifestation of human immunodeficiency virus infection. Stroke, 23, 117–8.Google Scholar
Chetty, R. 2005. Vasculitides associated with HIV infection. J Clin Pathol, 54, 275–8.Google Scholar
Chetty, R., Batitang, S., and Nair, R. 2000. Large artery vasculopathy in HIV positive patients. Another vasculitic enigma. Hum Pathol, 31, 374–9.Google Scholar
Choi, A. I., Vittinghoff, E., Deeks, S. G., et al. 2011. Cardiovascular risks associated with abacavir and tenofovir exposure in HIV-infected persons. AIDS 25, 1289–98.Google Scholar
Chow, F. C., Regan, S., Feske, S., et al. 2012. Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system. J Acquir Immune Defic Syndr, 60(4), 351–8.Google Scholar
Cole, J. W., Pinto, A. N., Hebel, J. R., et al. 2004. Acquired immunodeficiency syndrome and the risk of stroke. Stroke, 35, 51–6.Google Scholar
Cruciani, M., Zanichellib, V., Serpellonia, G., et al. 2011. Abacavir use and cardiovascular disease events: A meta-analysis of published and unpublished data. AIDS 25, 19932004.Google Scholar
Connor, M. D., Lammie, G. A., Bell, J. A., et al. 2000. Cerebral infarction in adult AIDS patients. Observations from the Edinburgh HIV autopsy cohort. Stroke, 31, 2117–26.Google Scholar
Dubrovsky, T., Curless, R., Scott, G., et al. 1998. Cerebral aneurysmal arteriopathy in childhood AIDS. Neurology, 51, 560–5.Google Scholar
Engstroom, J. W., Lowenstein, D. H., and Bredesen, D. E. 1989. Cerebral infarction and transient neurological deficits associated with acquired immune deficiency syndrome. AmJ Med, 86, 528–32.Google Scholar
Erbe, M., Rickerts, V., and Bauersachs, R. M. 2003. Acquired protein C and protein S deficiency in HIV infected patients. Clin Appl Thromb Haemost, 9, 325–31.Google Scholar
Evers, S., Nabavi, D., Ratiman, A., et al. 2003. Ischemic cerebrovascular events in HIV infection, a cohort study. Cerebrovasc Dis, 15, 199205.Google Scholar
Freiberg, M. S., Chang, C. H., Kuller, L. H., and Skanderson, M. 2013. HIV Infection and the risk of acute myocardial infarction. JAMA Intern Med, 173, 614–22.Google Scholar
Friis-Møller, N., Thiébaut, R., Reiss, P., et al. for the DAD study group. 2010. Predicting the risk of cardiovascular disease in HIV-infected patients: The data collection on adverse effects of anti-HIV drugs study. Eur J Cardiovasc Prev Rehabil, 17, 5, 491501.Google Scholar
Gherardi, R., Belec, L., and Mhin, C. 1993. The spectrum of vasculitis in human immunodeficiency virus-infected patients. Arthritis Rheum, 36, 1164–74.Google Scholar
Gillams, A. R., Allen, E., Hrieb, K., et al. 1997. Cerebral infarction in patients with AIDS. AJNR Am J Neuroradiol, 18, 1581–5.Google Scholar
Gisselbrecht, M., Cohen, P., and Lortholary, D. 1998. Human immunodeficiency virus-related vasculitis. Clinical presentation of and therapeutic approach to eight cases. Ann Med Interne (Paris), 149, 398405.Google Scholar
Goeijenbier, M., van Wissen, M., van de Weg, C., et al. 2012. Viral infections and mechanisms of thrombosis and bleeding. J Med Virol 84, 1680–96.Google Scholar
Gutierrez, J. and Ortiz, G. 2011. HIV/AIDS patients with HIV vasculopathy and VZV vasculitis: A case series. Clin Neuroradiol, 21, 145–51.Google Scholar
Hanna, D. B., Post, W. S., Deal, J. A., et al. 2015. HIV infection is associated with progression of subclinical carotid atherosclerosis. Clin Infect Dis 61, 640–50.Google Scholar
Hassell, K. L., Kressin, D. C., Neumann, A., Ellison, R., and Marlar, R. A. 1994. Correlation of antiphospholipid antibodies and protein S deficiency with thrombosis in HIV infected men. Blood Coagul Fibrinolysis, 5, 455–62.Google Scholar
Ho, D. D., Pomerantz, R. J., and Kaplan, J. C. 1987. Pathogenesis of infection with human immunodeficiency virus. N Engl J Med, 317, 278–86.Google Scholar
Hoffman, M., Berger, J. R., Nath, A., and Rayens, M. 2000. Cerebrovascular disease in young HIV infected black Africans in the Kwa-Zulu Natal Province of South Africa. J Neurovirol, 6, 229–36.Google Scholar
Hsue, P. Y., Lo, J. C., Franklin, A., et al. 2004. Progression of atherosclerosis as assessed by carotid intima–media thickness in patients with HIV infection. Circulation 109, 1603–8.Google Scholar
Joshi, V. V., Pawel, B., Connor, E., et al. 1987. Arteriopathy in children with acquired immune deficiency syndrome. Pediatr Pathol, 7, 261–75.Google Scholar
Kossorotoff, M., Touzé, E., Godon-Hardy, S., et al. 2006. Cerebral vasculopathy with aneurysm formation in HIV-infected young adults. Neurology, 66, 1121–2.Google Scholar
Kumwenda, J. J., Mateyu, G., Kampondeni, S., et al. 2005. Differential diagnosis of stroke in a setting of high HIV prevalence in Blantyre, Malawi. Stroke, 36, 960–4.Google Scholar
Kuwe, K., Llena, J. F., and Lyman, W. D. 1991. Human immunodeficiency virus-1 infection of the nervous system: An autopsy study of 268 adult, paediatric and foetal brains. Hum Pathol, 22, 700–10.Google Scholar
Lang, W., Miklossy, J., Deruaz, J. P., et al. 1989. Neuropathology of the acquired immune deficiency syndrome (AIDS): A report of 135 consecutive autopsy cases from Switzerland. Acta Neuropathol (Berlin), 77, 379–90.Google Scholar
Libman, B. S., Quismorio, F. P. Jr., and Stimmler, M. M. 1995. Polyarteritis nodosa like vasculitis in human deficiency virus infection. J Rheumatol, 22, 351–5.Google Scholar
Maniker, A. L. and Hunt, C. D. 1996. Cerebral aneurysm in the HIV patient: A report of six cases. Surg Neurol, 46, 4954.Google Scholar
Marcus, J. L., Leyden, W. A., Chaob, C. R., et al. 2014. HIV infection and incidence of ischemic stroke. AIDS, 28, 19111919.Google Scholar
Martin, C. M., Matlow, A. G., Chew, E., Sutton, D., and Pruzanski, W. 1989. Hyperviscosity syndrome in a patient with acquired immunodeficiency syndrome. Arch Intern Med, 149, 1435–6.Google Scholar
Martinez-Longoria, C. A., Morales-Aguirre, J. J., Villalobos-Acosta, C. P., Gomez-Barreto, D., and Cashat-Cruz, M. 2004. Occurrence of intracerebral aneurysm in an HIV-infected child: A case report. Pediatr Neurol, 31, 130–2.Google Scholar
Mazzoni, P., Chiriboga, C. A., Millar, W. S., and Rogers, A. 2000. Intracerebral aneurysms in human immunodeficiency virus infection: Case report and literature review. Pediatr Neurol, 23, 252–5.Google Scholar
Mizusawa, H., Hirano, A., Llena, J. F., and Shintaku, M. 1988. Cerebrovascular lesions in acquired immune deficiency syndrome (AIDS). Acta Neuropathol, 76, 451–7.Google Scholar
Mochan, A., Modi, M., and Modi, G. 2003. Stroke in black South African HIV positive patients, a prospective analysis. Stroke, 34, 1015.Google Scholar
Mochan, A., Modi, M., and Modi, G. 2005. Protein S deficiency in HIV associated ischemic stroke: An epiphenomenon of HIV infection. J Neurol Neurosurg Psychiatry, 76, 1455–6.Google Scholar
Nagel, M. A., Cohrs, R. J., Mahalingam, R., et al. 2008. The varicella zoster virus vasculopathies: Clinical, CSF, imaging and virologic features. Neurology, 70, 853.Google Scholar
Nair, R., Chetty, R., Woolgar, J., Naidoo, N. G., and Robbs, J. V. 2001. Spontaneous arteriovenous fistula resulting from HIV arteritis. J Vasc Surg, 33, 186–7.Google Scholar
Nunes, M. L., Pinho, A. P., and Sfoggia, A. 2001. Cerebral aneurysmal dilatation in an infant with perinatally acquired HIV infection and HSV encephalitis. Arq Neuropsiquiatr, 59, 830.Google Scholar
Ovbiagele, B. and Nath, A. 2011. Increasing incidence of ischemic stroke in patients with HIV infection. Neurology, 76, 444.Google Scholar
Patel, V. B., Sacoor, Z., Francis, P., et al. 2005. Ischemic stroke in young HIV positive patients in Kwa-Zulu Natal, South Africa. Neurology, 65, 759–61.Google Scholar
Patsalides, A. D., Wood, L. V., Atac, G. K., et al. 2002. Cerebrovascular disease in HIV-infected pediatric patients. AJR Am J Roentgenol, 179, 9991003.Google Scholar
Petito, C. K., Cho, E. S., Lemann, W., Naria, B. A., and Price, R. W. 1986. Neuropathology of acquired immunodeficiency syndrome (AIDS): An autopsy review. J Neuropathol Exp Neurol, 45, 635–46.Google Scholar
Pinto, A. N. 1996. AIDS and cerebrovascular disease. Stroke, 27, 538–43.Google Scholar
Qureshi, A. I. 2005. HIV infection and stroke: If not protein S deficiency then what explains the relationship. J Neurol Neurosurg Psychiatry, 76, 1331.Google Scholar
Qureshi, A. I., Janssen, R. S., Karon, J. M., et al. 1997. Human immunodeficiency virus infection and stroke in young patients. Arch Neurol, 54, 1150–3.Google Scholar
Rabinstein, A. A. 2003. Stroke in HIV-infected patients: A clinical perspective. Cerebrovasc Dis, 15, 3744.Google Scholar
Rhodes, R. H. 1987. Histopathology of the central nervous system in the acquired immunodeficiency syndrome. Hum Pathol, 18, 636–43.Google Scholar
Rhodes, R. H. and Ward, J. M. 1991. AIDS meningoencephalomyelitis: Pathogenesis and changing neuropathological findings. Pathol Annu, 26, 247–76.Google Scholar
Rubbert, A., Bock, E., Schwab, J., et al. 1994. Anticardiolipin antibodies in HIV infection: Association with cerebral perfusion defects as detected by 99 mTc–HMPAO SPECT. Clin Exp Immunol, 98, 361–8.Google Scholar
Shahbaz, S., Manicardi, M., Guaraldi, G., and Raggi, P. 2015. Cardiovascular disease in human immunodeficiency virus infected patients: A true or perceived risk? World J Cardiol 7, 633–44.Google Scholar
Sico, J. J., Chang, C. C., So-Armah, K., et al. 2015. HIV status and the risk of ischemic stroke among men. Neurology, 84, 1933–40.Google Scholar
Sklar, P., and Masur, H. 2003. HIV infection and cardiovascular disease: Is there really a link? N Engl J Med, 349, 2065–7.Google Scholar
Sorice, M., Griggi, T., and Arceria, P. 1994. Protein S and HIV infection. The role of anticardiolysis and antiprotein S. Thromb Res, 73, 65175.Google Scholar
Stahl, C. P., Wideman, C. S., and Spira, T. J. 1993. Protein S deficiency in men with long term human immunodeficiency virus infection. Blood, 81, 1801–7.Google Scholar
Statistics, SA. 2014. Mid-year population estimates 2014. See www.statssa.gov.za/publications/P0302/P03022014.pdf.Google Scholar
Sugerman, R. W., Church, J. A., and Goldsmith, J. C. 1996. Acquired protein S deficiency in children infected with human immunodeficiency virus. Pediatr Infect Dis J, 15, 106–11.Google Scholar
Tipping, B., de Villiers, L., Candy, S., and Wainwright, H. 2006. Stroke caused by human immunodeficiency virus-associated intracranial large-vessel aneurysmal vasculopathy. Arch Neurol, 63, 1640–2.Google Scholar
Tipping, B., de Villiers, L., Wainright, H., Candy, S., and Bryer, A. 2007. Stroke in human immunodeficiency virus infections. J Neurol, Neurosurg, and Psychiatr, 78, 1320–4.Google Scholar
Valeriano-Marcet, J., Ravichandran, L., and Kerr, L. D. 1990. HIV associated systemic necrotising vasculitis. J Rheumatol, 17, 1091–3.Google Scholar
Van den Dries, L. W., Gruters, R. A., Hovels-van der Borden, S. B., et al. 2015. Von Willebrand factor is elevated in HIV patients with a history of thrombosis. Front Microbiol, 6, 180.Google Scholar
Walker, R. W., Jusabani, A., Aris, E., et al. 2013. Stroke risk factors in an incident population in urban and rural Tanzania: A prospective, community-based, case control study. Lancet Glob Health, 1, e282e288.Google Scholar
Worm, S. W., Sabin, C., Weber, R., et al. for the D:A:D Study Group. 2010. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: The Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. J Infect Dis, 201, 318–30.Google Scholar
Young, J., Xiao, Y., Moodie, E. M., et al. 2015. Effect of cumulating exposure to abacavir on the risk of cardiovascular disease events in patients from the Swiss HIV cohort study. J Acquir Immune Defic Syndr, 69, 413–21.Google Scholar

References

Ahmadi, J, Tung, H, Giannotta, SL, Destian, S. Monitoring of infectious intracranial aneurysms by sequential computed tomographic/magnetic resonance imaging studies. Neurosurgery, 1993, 32:4550.Google Scholar
Asaithambi, G, Adil, MM, Qureshi, AI. Thrombolysis for ischemic stroke associated with infective endocarditis results from the nationwide inpatient sample. Stroke, 2013, 44:2917–19.Google Scholar
Aziz, F, Perwaiz, S, Penupolu, S, et al. Intracranial hemorrhage in infective endocarditis: A case report. J Thorac Dis, 2011, 3:134–7.Google Scholar
Baddley, JW, Benjamin, DK, Patel, M, et al. Candida infective endocarditis. Eur J Clin Microbiol Infect Dis, 2008, 27:519–29.Google Scholar
Baddour, LM, Wilson, LM Infections of prosthetic valves and other cardiovascular devices: Intravascular devices. Mandel, Douglas and Bennett’s Principles and Practice and Infectious Diseases, 5th edn., eds. Mandell, GL, Bennett, JE, Dolin, R. Philadelphia, PA: Elsevier, 2005, 10221044.Google Scholar
Baddour, LM, Wilson, WR, Bayer, AS Infective endocarditis in adults: Diagnosis, antimicrobial therapy and management of complications. AHA scientific statement. Circulation, 2015, 132:1435–86.Google Scholar
Barsic, B, Dickerman, S, Krajinovic, V, et al. Influence of the timing of cardiac surgery on the outcome of patients with infective endocarditis and stroke. Clin Infect Dis, 2013, 56:209–17.Google Scholar
Bashore, TM, Cabell, C, Fowler, V. Update on infective endocarditis. Curr Probl Cardiol, 2006, 31:274352.Google Scholar
Bringham, WL Treatment of mycotic intracranial aneurysms. J Neurosurg, 1977, 46:428–37.Google Scholar
Castillo, JC, Anguita, MP, Ramirez, A, et al. Long term outcome of infective endocarditis in patients who were not drug addicts: A 10 year study. Heart, 2000, 83:525–30.Google Scholar
Champey, J, Pavese, P, Bouvaist, H, et al. Value of brain MRI in infective endocarditis: A narrative literature review. Eur J Clin Microbiol Infect Dis, 2016, 35:159168.Google Scholar
Chan, KL, Dumesnil, JG, Cujec, B, et al. A randomized trial of aspirin on the risk of embolic events in patients with infective endocarditis. J Am Coll Cardiol, 2003, 42:775–80.Google Scholar
Corr, P, Wright, M, Handler, LC Endocarditis-related cerebral aneurysms: Radiologic changes with treatment. Neurosurgery, 1993, 32:45–9.Google Scholar
Dickerman, SA, Abrutyn, E, Barsic, B, et al. The relationship between the initiation of antimicrobial therapy and the incidence of stroke in infective endocarditis: An analysis from the ICE Prospective Cohort Study (ICE–PCS). Am Heart J, 2007, 154:1086–94.Google Scholar
Ducruet, AF, Hickman, ZL, Zacharia, BE, et al. Intracranial infectious aneurysms: A comprehensive review. Neurosurg Rev, 2010, 33:3746.Google Scholar
Frazee, JG, Cahan, LD, Winter, J. Bacterial intracranial aneurysms. J Neurosurg, 1980, 53:633–41.Google Scholar
García-Cabrera, E, Fernández-Hidalgo, N, Almirante, B et al. Neurological complications of infective endocarditis: Risk factors, outcome, and impact of cardiac surgery – a multicenter observational study. Circulation, 2013, 127:2272–84.Google Scholar
Hart, RG, Foster, JW, Luther, MF, Kanter, MC Stroke in infective endocarditis. Stroke, 1990, 21:695700.Google Scholar
Hart, RG, Kagan-Hallet, K, Joerns, S. Mechanism of intracranial hemorrhage in infective endocarditis. Stroke, 1987, 18:1046–56.Google Scholar
Heiro, M, Nikoskelainen, J, Engblom, E, et al. Neurologic manifestation of infective endocarditis. A 17-year experience in a teaching hospital in Finland. Arch Intern Med, 2000, 160:2781–7.Google Scholar
Hess, A, Klein, I, Iung, B et al. 44 Brain MRI findings in neurologically asymptomatic patients with infective endocarditis. Am J Neuroradiol, 2013, 34:1579–84.Google Scholar
Hill, EE, Herijgers, P, Claus, P, et al. Infective endocarditis: changing epidemiology and predictors of 6 month mortality: A prospective cohort study. Eur Heart J, 2007, 28:196.Google Scholar
Hui, FK, Bain, M, Obuchowski, NA, et al. Mycotic aneurysm detection rates with cerebral angiography in patients with infective endocarditis. J NeuroIntervent Surg, 2015, 7:449–52.Google Scholar
Jeong-Min, K, Ji-Su, J, Yong-Won, K. Forced arterial suction thrombectomy of septic embolic middle cerebral artery occlusion due to infective endocarditis: An illustrative case and review of the literature. Neurointervention, 2014, 9:101–5.Google Scholar
Karchmer, AW. Infective endocarditis. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 7th edn. WB Saunders Co, 2005, pp. 1633–58.Google Scholar
Klein, I, Iung, B, Labreuche, J, et al. Cerebral microbleeds are frequent in infective endocarditis: A case control study. Stroke, 2009, 40:3461–5.Google Scholar
Lee, WK, Mossop, PJ, Little, AF, et al. Infected (mycotic) aneurysms: Spectrum of imaging appearances and management. Radiographics, 2008, 28:1853–68.Google Scholar
Merkler, AE, Chu, SY, Lerario, MP, et al. Temporal relationship between infective endocarditis and stroke. Neurology, 2015, 85:512–16.Google Scholar
Molinari, GF, Smith, L, Goldstein, MN, Satran, R. Pathogenesis of cerebral mycotic aneurysms. Neurology, 1973, 23:325–32.Google Scholar
Moreillon, P, Que, YA, Bayer, AS Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am, 2002, 16:297318.Google Scholar
Moreillon, P, Que, YA Infective endocarditis. Lancet, 2004, 363:139–49.Google Scholar
Ohira, S, Doi, K, Kawajiri, H, et al. Prediction of early postoperative cerebral hemorrhage in infective endocarditis patients using magnetic resonance imaging. Gen Thorac Cardiovasc Surg, 2014, 62:608–13.Google Scholar
Peters, PJ, Harrison, T, Lennox, JL A dangerous dilemma: Management of infectious intracranial aneurysms complicating endocarditis. Lancet Infect Dis, 2006, 6:742–48.Google Scholar
Rizzi, M, Ravasio, V, Carobbio, A, et al. Predicting the occurrence of embolic events: An analysis of 1456 episodes of infective endocarditis from the Italian Study on Endocarditis (SEI). BMC Infect Dis, 2014, 14:230.Google Scholar
Ruttmann, E, Willeit, J, Ulmer, H, et al. Neurological outcome of septic cardioembolic stroke after infective endocarditis. Stroke, 2006, 37:2094.Google Scholar
Salgado, AV, Furlan, AJ, Keys, TF, et al. Neurologic complications of endocarditis: A 12-year experience. Neurology, 1989, 39:173–8.Google Scholar
Singhal, AB, Topcuoglu, MA, Buonanno, FS. Original contributions: Acute ischemic stroke patterns in infective and non bacterial thrombotic endocarditis: A diffusion-weighted magnetic resonance imaging study. Stroke, 2002, 33:1267–73.Google Scholar
Snygg-Martin, U, Gustafsson, L, Rosengren, L. Cerebrovascular complications in patients with left-sided infective endocarditis are common: A prospective study using magnetic resonance imaging and neurochemical brain damage markers. Clin Infect Dis, 2008, 47:23.Google Scholar
Steckelberg, JM, Murphy, JG, Ballard, D, et al. Emboli in infective endocarditis: The prognostic value of echocardiography. Ann Intern Med, 1991, 114:635–40.Google Scholar
Tornos, MP, Permanyer-Miralda, G, Olona, M, et al. Long-term complications of native valve infective endocarditis in non-addicts. A 15-year follow-up study. Ann Intern Med, 1992, 117:567.Google Scholar
Weinstein, LW, Brusch, JL. Infective Endocarditis. New York, NY: Oxford University Press, 1996.Google Scholar
Whitlock, RP, Sun, JC, Fremes, SE, et al. Antithrombotic and thrombolytic therapy for valvular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th edn: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2012, (2 Suppl):e576S.Google Scholar
Zanaty, M, Chalouhi, N, Starke, RM, et al. Endovascular treatment of cerebral mycotic aneurysm: A review of the literature and single center experience. BioMed Res Int, 2013, 151643.Google Scholar

References

Amlie-Lefond, C., Kleinschmidt-DeMasters, B. K., Mahalingam, R., Davis, L. E., and Gilden, D. H. 1995. The vasculopathy of varicella-zoster virus encephalitis. Ann Neurol, 37, 784–90.Google Scholar
Askalan, R., Laughlin, S., Mayank, S., et al. 2001. Chickenpox and stroke in childhood: A study of frequency and causation. Stroke, 32, 1257–62.Google Scholar
Aurelius, E., Johansson, B., Skoldenberg, B., Staland, A., and Forsgren, M. 1991. Rapid diagnosis of herpes simplex encephalitis by nested polymerase chain reaction assay of cerebrospinal fluid. Lancet, 337, 189–92.Google Scholar
Baudouin, E., and Lantuejoul, P. 1919. Les troublecas moteurs dans le zona. Gazette des Hopitaux.Google Scholar
Braun, K. P., Bulder, M. M., Chabrier, S., et al. 2009. The course and outcome of unilateral intracranial arteriopathy in 79 children with ischaemic stroke. Brain, 132, 544–57.Google Scholar
Breuer, J., Pacou, M., Gauthier, A., and Brown, M. M. 2014. Herpes zoster as a risk factor for stroke and TIA: A retrospective cohort study in the UK. Neurology, 82, 206–12.Google Scholar
Cheng-Ching, E., Jones, S., Hui, F. K., et al. 2015. High-resolution MRI vessel wall imaging in varicella zoster virus vasculopathy. J Neurol Sci, 351, 168–73.Google Scholar
Ciccone, S., Faggioli, R., Calzolari, F., et al. 2010. Stroke after varicella-zoster infection: Report of a case and review of the literature. Pediatr Infect Dis J, 29, 864–7.Google Scholar
Devinsky, O., Cho, E. S., Petito, C. K., and Price, R. W. 1991. Herpes zoster myelitis. Brain, 114, 1181–96.Google Scholar
Ferry, G., Lonchampt, M., Pennel, L., et al. 1997. Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett, 402, 111–5.Google Scholar
Frid, M.G., Brunetti, J. A., Burke, D. L., et al. 2006. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol, 168, 659–69.Google Scholar
Fukumoto, S., Kinjo, M., Hokamura, K., and Tanaka, K. 1986. Subarachnoid hemorrhage and granulomatous angiitis of the basilar artery: Demonstration of the varicella-zoster-virus in the basilar artery lesions. Stroke, 17, 1024–8.Google Scholar
Gilden, D. H., Beinlich, B. R., Rubinstien, E. M., et al. 1994. Varicella-zoster virus myelitis: An expanding spectrum. Neurology, 44, 1818–23.Google Scholar
Gilden, D. H., Kleinschmidt-DeMasters, B. K., Wellish, M., et al. 1996. Varicella zoster virus, a cause of waxing and waning vasculitis: New England Journal of Medicine case 5–1995 revisited. Neurology, 47, 1441–6.Google Scholar
Gilden, D., White, T., Khmeleva, N., et al. 2015. Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology, 84, 1948–55.Google Scholar
Gilden, D., White, T., Khmeleva, N., Boyer, P. J., and Nagel, M. A. 2016. VZV in biopsy-positive and -negative giant cell arteritis: Analysis of 100+ temporal arteries. Neurol Neuroimmunol Neuroinflamm, 3, e16.Google Scholar
Hartney, T., Birari, R., Venkataraman, S., et al. 2011. Xanthine oxidase-derived ROS upregulate Egr-a via ERK ½ in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PLoS One, 6, doi: 10.1371/journal/pone.0027531.Google Scholar
Haug, A., Mahalingam, R., Cohrs, R. J., et al. 2010. Recurrent polymorphonuclear pleocytosis with increased red blood cells caused by varicella zoster virus infection of the central nervous system: Case report and review of the literature. J Neurol Sci, 292, 85–8.Google Scholar
Heymann, A. D., Chodick, G., Karpati, T., et al. 2008. Diabetes as a risk factor for herpes zoster infection: Results of a population-based study in Israel. Infection, 36, 226–30.Google Scholar
Hsieh, C. C., Yen, M. H., Yen, C. H., and Lau, Y. T. 2001. Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc Res, 49, 135–45.Google Scholar
Itoh, Y., and Nagase, H. 1995. Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. J Biol Chem, 270, 16518–21.Google Scholar
Kang, J. H., Ho, J. D., Chen, Y. H., and Lin, H. C. 2009. Increased risk of stroke after a herpes zoster attack: A population-based follow-up study. Stroke, 40, 3443–8.Google Scholar
Langan, S. M., Minassian, C., Smeeth, L., and Thomas, S. L. 2014. Risk of stroke following herpes zoster: A self-controlled case-series study. Clin Infect Dis, 58, 1497–503.Google Scholar
Lanthier, S., Armstrong, D., Domi, T., and deVeber, G. 2005. Post-varicella arteriopathy of childhood: Natural history of vascular stenosis. Neurology, 64, 660–3.Google Scholar
Li, J., Li, W., Su, J., et al. 2003. Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: Possible relation to neurodegenerative diseases and strokes. Brain Res Bull, 62, 101–6.Google Scholar
Liberman, A. L., Nagel, M. A., Hurley, M. C., et al. 2014. Rapid development of 9 cerebral aneurysms in varicella-zoster virus vasculopathy. Neurology, 82, 2139–41.Google Scholar
Lin, H. C., Chien, C. W., and Ho, J. D. 2010. Herpes zoster ophthalmicus and the risk of stroke: A population-based follow-up study. Neurology, 74, 792–7.Google Scholar
Mathias, M., Nagel, M.A., Khmeleva, N., et al. 2013. VZV multifocal vasculopathy with ischemic optic neuropathy, acute retinal necrosis and temporal artery infection in the absence of zoster rash. J Neurol Sci, 325, 180–2.Google Scholar
Minassian, C., Thomas, S. L., Smeeth, L., et al. 2015. Acute cardiovascular events after herpes zoster: A self-controlled case series analysis in vaccinated and unvaccinated older residents of the United States. PLoS Med, 12, e1001919.Google Scholar
Miravet, E., Danchaivijitr, N., Basu, H., Saunders, D. E., and Ganesan, V. 2007. Clinical and radiological features of childhood cerebral infarction following varicella zoster virus infection. Dev Med Child Neurol, 49, 417–22.Google Scholar
Nagel, M. A., Forghani, B., Mahalingam, R., et al. 2007. The value of detecting anti-VZV IgG antibody in CSF to diagnose VZV vasculopathy. Neurology, 68, 1069–73.Google Scholar
Nagel, M. A., Cohrs, R. J., Mahalingam, R., et al. 2008. The varicella zoster virus vasculopathies: clinical, CSF, imaging, and virologic features. Neurology, 70, 853–60.Google Scholar
Nagel, M. A., Traktinskiy, I., Azarkh, Y., et al. 2011. Varicella zoster virus vasculopathy: Analysis of virus-infected arteries. Neurology, 77, 364–70.Google Scholar
Nagel, M. A., Traktinskiy, I., Choe, A., Rempel, A., and Gilden, D. 2012. Varicella-zoster virus expression in the cerebral arteries of diabetic subjects. Arch Neurol, 69, 142–4.Google Scholar
Nagel, M. A., Bennett, J. L., Khmeleva, N., et al. 2013a. Multifocal VZV vasculopathy with temporal artery infection mimics giant cell arteritis. Neurology, 80, 2017–21.Google Scholar
Nagel, M. A., Choe, A., Khmeleva, N., et al. 2013b. Search for varicella zoster virus and herpes simplex virus-1 in normal human cerebral arteries. J Neurovirol, 19, 181–5.Google Scholar
Nagel, M.A., Khmeleva, N., Boyer, P.J., Choe, A., Bert, R., and Gilden, D. 2013c. Varicella zoster virus in the temporal artery of a patient with giant cell arteritis. J Neurol Sci, 335, 228–30.Google Scholar
Nagel, M. A., Russman, A. N., Feit, H., et al. 2013d. VZV ischemic optic neuropathy and subclinical temporal artery infection without rash. Neurology, 80, 220–2.Google Scholar
Nagel, M. A., Traktinskiy, I., Stenmark, K. R., et al. 2013e. Varicella-zoster virus vasculopathy: immune characteristics of virus-infected arteries. Neurology, 80, 62–8.Google Scholar
Nagel, M. A., Khmeleva, N., Choe, A., Gutierrez, J., and Gilden, D. 2014. Varicella zoster virus (VZV) in cerebral arteries of subjects at high risk for VZV reactivation. J Neurol Sci, 339, 32–4.Google Scholar
Nagel, M. A., White, T., Khmeleva, N., et al. 2015. Analysis of varicella-zoster virus in temporal arteries biopsy positive and negative for giant cell arteritis. JAMA Neurol, 72, 1281–7.Google Scholar
Okada, Y., and Nakanishi, I. 1989. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human neutrophil elastase and cathepsin G. FEBS Lett, 249, 353–6.Google Scholar
Sabry, A., Hauk, P. J., Jing, H., et al. 2014. Vaccine strain varicella-zoster virus-induced central nervous system vasculopathy as the presenting feature of DOCK8 deficiency. J Allergy Clin Immunol, 133, 1225–7.Google Scholar
Salazar, R., Russman, A. N., Nagel, M. A., et al. 2011. Varicella zoster virus ischemic optic neuropathy and subclinical temporal artery involvement. Arch Neurol, 68, 517–20.Google Scholar
Siddiqi, S. A., Nishat, S., Kanwar, D., et al. 2012. Cerebral venous sinus thrombosis: Association with primary varicella zoster virus infection. J Stroke Cerebrovasc Dis, 21, 917–4.Google Scholar
Sreenivasan, N., Basit, S., Wohlfahrt, J., et al. 2013. The short- and long-term risk of stroke after herpes zoster: A nationwide population-based cohort study. PLoS One, 8, e69156.Google Scholar
Stenmark, K.R., Frid, M.G., Yeager, M., et al. 2012. Targeting the adventitial microenvironment in pulmonary hypertension: A potential approach to therapy that considers epigenetic change. Pulm Circ, 2, 314.Google Scholar
Stevens, D. A., Ferrington, R. A., Jordan, G. W., and Merigan, T. C. 1975. Cellular events in zoster vesicles: Relation to clinical course and immune parameters. J Infect Dis, 131, 509–15.Google Scholar
Sundström, K., Weibull, C. E., Soderberg-Lofdal, K., et al. 2015. Incidence of herpes zoster and associated events including stroke: A population-based cohort study. BMC Infect Dis, 15, 488.Google Scholar
Weber, D. S., Taniyama, Y., Rocic, P., et al. 2004. Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circ Res, 94, 1219–26.Google Scholar
Yawn, B. P., Wollan, P. C., Nagel, M. A., and Gilden, D. 2016. Risk of stroke and myocardial infarction after herpes zoster in older adults in a US community population. Mayo Clin Proc, 91, 3344.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×