Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T10:35:40.328Z Has data issue: false hasContentIssue false

Chapter 1 - Pathophysiology of Epilepsy

Published online by Cambridge University Press:  11 October 2019

Vibhangini S. Wasade
Affiliation:
Henry Ford Medical Group HFHS, Michigan
Marianna V. Spanaki
Affiliation:
Wayne State University, Michigan
Get access

Summary

A seizure is a situational clinical event that may be instigated by any number of extrinsic or intrinsic precipitating factors and that results in an excessive, hypersynchronous discharge of a cortical neuronoglial population and manifests in the brain in either a localized or widespread manner. This abnormal activity takes over the normal functioning of one or more brain networks to result in seizures that characterize over 40 recognized epileptic syndromes.1

Type
Chapter
Information
Understanding Epilepsy
A Study Guide for the Boards
, pp. 1 - 18
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, AT, Berkovic, SF, Brodie, MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676685.Google Scholar
McNamara, JO. Cellular and molecular basis of epilepsy. J Neurosci. 1994;14(6):34133425.CrossRefGoogle ScholarPubMed
Tasker, JG, Hoffman, NW, Kim, YI, et al. Electrical properties of neocortical neurons in slices from children with intractable epilepsy. J Neurophysiol. 1996;75(2):931939.Google Scholar
Azevedo, FA, Carvalho, LR, Grinberg, LT, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532541.CrossRefGoogle Scholar
Hartzfeld, P, Elisevich, K, Pace, M, Smith, B, Gutierrez, JA. Characteristics and surgical outcomes for medial temporal post-traumatic epilepsy. Br J Neurosurg. 2008;22(2):224230.Google Scholar
Kotapka, MJ, Gennarelli, TA, Graham, DI, et al. Selective vulnerability of hippocampal neurons in acceleration-induced experimental head injury. J Neurotrauma. 1991;8(4):247258.CrossRefGoogle ScholarPubMed
Nelson, KB, Ellenberg, JH. Prognosis in children with febrile seizures. Pediatrics. 1978;61(5):720727.CrossRefGoogle ScholarPubMed
Lynch, NE, Stevenson, NJ, Livingstone, V, et al. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia. 2012;53(3):549557.CrossRefGoogle ScholarPubMed
Markram, H, Toledo-Rodriguez, M, Wang, Y, et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5(10):793807.Google Scholar
Kiernan, JA. Barr’s The Human Nervous System: An Anatomical Viewpoint. 9th edn. Baltimore: Lippincott Williams & Wilkins; 2009.Google Scholar
Wang, Y, Gupta, A, Toledo-Rodriguez, M, Wu, CZ, Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex. 2002;12(4):395410.Google Scholar
Chu, J, Anderson, SA. Development of cortical interneurons. Neuropsychopharmacology. 2015;40(1):1623.CrossRefGoogle ScholarPubMed
Benarroch, EE. Neocortical interneurons: functional diversity and clinical correlations. Neurology. 2013;81(3):273280.CrossRefGoogle ScholarPubMed
Rudy, B, Fishell, G, Lee, S, Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol. 2011;71(1):4561.Google Scholar
Jiang, X, Lachance, M, Rossignol, E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Prog Brain Res. 2016;226:81126.CrossRefGoogle ScholarPubMed
Silberberg, G, Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron. 2007;53(5):735746.CrossRefGoogle ScholarPubMed
Hilscher, MM, Leao, RN, Edwards, SJ, Leao, KE, Kullander, K. Chrna2-Martinotti cells synchronize layer 5 type a pyramidal cells via rebound excitation. PLoS Biol. 2017;15(2):e2001392.Google Scholar
Tai, C, Abe, Y, Westenbroek, RE, Scheuer, T, Catterall, WA. Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc Natl Acad Sci USA. 2014;111(30):E3139E3148.CrossRefGoogle Scholar
Rutecki, PA, Lebeda, FJ, Johnston, D. Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysiol. 1985;54(5):13631374.Google Scholar
Prince, DA, Connors, BW, Benardo, LS. Mechanisms underlying interictal-ictal transitions. Adv Neurol. 1983;34:177187.Google ScholarPubMed
Dudek, FE, Obenaus, A, Tasker, JG. Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: importance of non-synaptic mechanisms in hippocampal epileptogenesis. Neurosci Lett. 1990;120(2):267270.CrossRefGoogle ScholarPubMed
Traub, RD, Dudek, FE, Taylor, CP, Knowles, WD. Simulation of hippocampal afterdischarges synchronized by electrical interactions. Neuroscience. 1985;14(4):10331038.Google Scholar
Jefferys, JG, Haas, HL. Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature. 1982;300(5891):448450.Google Scholar
Vizi, ES, Fekete, A, Karoly, R, Mike, A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol. 2010;160(4):785809.Google Scholar
Lendvai, B, Vizi, ES. Nonsynaptic chemical transmission through nicotinic acetylcholine receptors. Physiol Rev. 2008;88(2):333349.CrossRefGoogle ScholarPubMed
Jin, MM, Chen, Z. Role of gap junctions in epilepsy. Neurosci Bull. 2011;27(6):389406.Google Scholar
Elisevich, K, Rempel, SA, Smith, BJ, Edvardsen, K. Hippocampal connexin 43 expression in human complex partial seizure disorder. Exp Neurol. 1997;145(1):154164.Google Scholar
Nadarajah, B, Thomaidou, D, Evans, WH, Parnavelas, JG. Gap junctions in the adult cerebral cortex: regional differences in their distribution and cellular expression of connexins. J Comp Neurol. 1996;376(2):326342.Google Scholar
Venance, L, Piomelli, D, Glowinski, J, Giaume, C. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature. 1995;376(6541):590594.CrossRefGoogle ScholarPubMed
Trachtenberg, MC, Pollen, DA. Neuroglia: biophysical properties and physiologic function. Science. 1970;167(3922):12481252.Google Scholar
Deans, MR, Gibson, JR, Sellitto, C, Connors, BW, Paul, DL. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron. 2001;31(3):477485.Google Scholar
Baude, A, Bleasdale, C, Dalezios, Y, Somogyi, P, Klausberger, T. Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex. 2007;17(9):20942107.Google Scholar
Steyn-Ross, ML, Steyn-Ross, DA, Sleigh, JW. Modelling general anaesthesia as a first-order phase transition in the cortex. Prog Biophys Mol Biol. 2004;85(2–3):369385.Google Scholar
Voss, LJ, Sleigh, JW. Gap junctions regulate seizure activity – but in unexpected ways. In: Dere, E, ed. Gap Junctions in the Brain: Physiological and Pathological Roles. Waltham, MA: Academic Press; 2013:217229.CrossRefGoogle Scholar
Grenier, F, Timofeev, I, Steriade, M. Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. J Neurophysiol. 2001;86(4):18841898.Google Scholar
Schmitz, D, Schuchmann, S, Fisahn, A, et al. Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron. 2001;31(5):831840.Google Scholar
Traub, RD, Whittington, MA, Buhl, EH, et al. A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia. 2001;42(2):153170.Google Scholar
Van Rijn, C, Meinardi, H. Neurochemistry and epileptology. Epilepsia. 2009;50(Suppl 3):1729.Google Scholar
Meldrum, BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4S Suppl):1007s1015s.CrossRefGoogle ScholarPubMed
Anwyl, R. Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology. 2009;56(4):735740.CrossRefGoogle ScholarPubMed
Danbolt, NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1105.Google Scholar
Jones, EA, Yurdaydin, C, Basile, AS. The GABA hypothesis: state of the art. Adv Exp Med Biol. 1994;368:89101.Google Scholar
Mathern, GW, Mendoza, D, Lozada, A, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology. 1999;52(3):453472.CrossRefGoogle ScholarPubMed
Bradford, HF. Glutamate, GABA and epilepsy. Prog Neurobiol. 1995;47(6):477511.CrossRefGoogle ScholarPubMed
Blumenfeld, H. Cellular and network mechanisms of spike-wave seizures. Epilepsia. 2005;46(Suppl 9):2133.CrossRefGoogle ScholarPubMed
Haut, SR, Albin, RL. Dopamine and epilepsy: hints of complex subcortical roles. Neurology. 2008;71(11):784785.Google Scholar
Starr, MS. The role of dopamine in epilepsy. Synapse. 1996;22(2):159194.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Giorgi, FS, Pizzanelli, C, Biagioni, F, Murri, L, Fornai, F. The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci Biobehav Rev. 2004;28(5):507524.CrossRefGoogle Scholar
McNamara, JO, Byrne, MC, Dasheiff, RM, Fitz, JG. The kindling model of epilepsy: a review. Prog Neurobiol. 1980;15(2):139159.CrossRefGoogle ScholarPubMed
Avanzini, G. Do seizures promote epileptogenesis and cause cognitive decline? Eur Neurol Rev. 2015;9(2).Google Scholar
Hildebrand, MS, Dahl, HH, Damiano, JA, et al. Recent advances in the molecular genetics of epilepsy. J Med Genet. 2013;50(5):271279.Google Scholar
Myers, CT, Mefford, HC. Advancing epilepsy genetics in the genomic era. Genome Med. 2015;7(1):91.CrossRefGoogle ScholarPubMed
Wither, RG, Borlot, F, MacDonald, A, et al. 22q11.2 deletion syndrome lowers seizure threshold in adult patients without epilepsy. Epilepsia. 2017;58(6):10951101.Google Scholar
de Kovel, CG, Trucks, H, Helbig, I, et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain. 2010;133(Pt 1):2332.Google Scholar
Helbig, I, Mefford, HC, Sharp, AJ, et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 2009;41(2):160162.Google Scholar
Helbig, I, Hodge, SE, Ottman, R. Familial cosegregation of rare genetic variants with disease in complex disorders. Eur J Hum Genet. 2013;21(4):444450.CrossRefGoogle ScholarPubMed
de Ligt, J, Willemsen, MH, van Bon, BW, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):19211929.Google Scholar
Abbas, W, Kumar, A, Herbein, G. The eEF1A proteins: at the crossroads of oncogenesis, apoptosis, and viral infections. Front Oncol. 2015;5:75.Google Scholar
Heinzen, EL, Radtke, RA, Urban, TJ, et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet. 2010;86(5):707718.Google Scholar
Crompton, DE, Scheffer, IE, Taylor, I, et al. Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance. Brain. 2010;133(11):32213231.Google Scholar
Hedera, P, Blair, MA, Andermann, E, et al. Familial mesial temporal lobe epilepsy maps to chromosome 4q13.2-q21.3. Neurology. 2007;68(24):21072112.Google Scholar
Ottman, R, Risch, N, Hauser, WA, et al. Localization of a gene for partial epilepsy to chromosome 10q. Nat Genet. 1995;10(1):5660.Google Scholar
Kalachikov, S, Evgrafov, O, Ross, B, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet. 2002;30(3):335341.Google Scholar
Steinlein, OK, Mulley, JC, Propping, P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 1995;11(2):201203.CrossRefGoogle ScholarPubMed
Liu, JY, Kasperaviciute, D, Martinian, L, Thom, M, Sisodiya, SM. Neuropathology of 16p13.11 deletion in epilepsy. PLoS One. 2012;7(4):e34813.Google Scholar
Ishida, S, Picard, F, Rudolf, G, et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet. 2013;45(5):552555.Google Scholar
Dibbens, LM, de Vries, B, Donatello, S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45(5):546551.Google Scholar
Lal, D, Reinthaler, EM, Schubert, J, et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol. 2014;75(5):788792.Google Scholar
Picard, F, Makrythanasis, P, Navarro, V, et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology. 2014;82(23):21012106.Google Scholar
D’Gama, AM, Geng, Y, Couto, JA, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol. 2015;77(4):720725.Google Scholar
Lim, JS, Kim, WI, Kang, HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med. 2015;21(4):395400.CrossRefGoogle ScholarPubMed
Singh, NA, Charlier, C, Stauffer, D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998;18(1):25-29.CrossRefGoogle Scholar
Heron, SE, Crossland, KM, Andermann, E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet. 2002;360(9336):851852.CrossRefGoogle ScholarPubMed
Claes, L, Del-Favero, J, Ceulemans, B, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68(6):13271332.Google Scholar
Mefford, HC. CNVs in epilepsy. Curr Genet Med Rep. 2014;2(3):162167.CrossRefGoogle ScholarPubMed
Nava, C, Dalle, C, Rastetter, A, et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet. 2014;46(6):640645.Google Scholar
Carvill, GL, Weckhuysen, S, McMahon, JM, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82(14):12451253.Google Scholar
Moller, RS, Wuttke, TV, Helbig, I, et al. Mutations in GABRB3: from febrile seizures to epileptic encephalopathies. Neurology. 2017;88(5):483492.CrossRefGoogle ScholarPubMed
Torkamani, A, Bersell, K, Jorge, BS, et al. De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol. 2014;76(4):529540.Google Scholar
Carvill, GL, Heavin, SB, Yendle, SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45(7):825830.Google Scholar
Suls, A, Jaehn, JA, Kecskes, A, et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet. 2013;93(5):967975.Google Scholar
Galizia, EC, Myers, CT, Leu, C, et al. CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain. 2015;138(Pt 5):11981207.Google Scholar
Liu, JS. Molecular genetics of neuronal migration disorders. Curr Neurol Neurosci Rep. 2011;11(2):171178.Google Scholar
Fox, JW, Lamperti, ED, Eksioglu, YZ, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron. 1998;21(6):13151325.Google Scholar
Sheen, VL, Dixon, PH, Fox, JW, et al. Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet. 2001;10(17):17751783.Google Scholar
Srikandarajah, N, Martinian, L, Sisodiya, SM, et al. Doublecortin expression in focal cortical dysplasia in epilepsy. Epilepsia. 2009;50(12):26192628.Google Scholar
Chevassus-au-Louis, N, Baraban, SC, Gaiarsa, JL, Ben-Ari, Y. Cortical malformations and epilepsy: new insights from animal models. Epilepsia. 1999;40(7):811821.Google Scholar
Jacobs, KM, Kharazia, VN, Prince, DA. Mechanisms underlying epileptogenesis in cortical malformations. Epilepsy Res. 1999;36(2–3):165188.Google Scholar
Hauser, WA. Seizure disorders: the changes with age. Epilepsia. 1992;33(Suppl 4):S6S14.CrossRefGoogle ScholarPubMed
Gaiarsa, JL, Tseeb, V, Ben-Ari, Y. Postnatal development of pre- and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat. J Neurophysiol. 1995;73(1):246255.Google Scholar
Leinekugel, X, Medina, I, Khalilov, I, Ben-Ari, Y, Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron. 1997;18(2):243255.Google Scholar
Holmes, GL, Ben-Ari, Y. Seizures in the developing brain: perhaps not so benign after all. Neuron. 1998;21(6):12311234.Google Scholar
Edebol-Tysk, K. Epidemiology of spastic tetraplegic cerebral palsy in Sweden. I. Impairments and disabilities. Neuropediatrics. 1989;20(1):4145.Google Scholar
Yu, JY, Pearl, PL. Metabolic causes of epileptic encephalopathy. Epilepsy Res Treat. 2013;2013:124934.Google Scholar
Vezzani, A, Granata, T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46(11):17241743.Google Scholar
Li, G, Bauer, S, Nowak, M, et al. Cytokines and epilepsy. Seizure. 2011;20(3):249256.Google Scholar
Nowak, M, Bauer, S, Haag, A, et al. Interictal alterations of cytokines and leukocytes in patients with active epilepsy. Brain Behav Immun. 2011;25(3):423428.Google Scholar
Hirschberg, DL, Moalem, G, He, J, et al. Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J Neuroimmunol. 1998;89(1–2):8896.Google Scholar
Holmin, S, Soderlund, J, Biberfeld, P, Mathiesen, T. Intracerebral inflammation after human brain contusion. Neurosurgery. 1998;42(2):291298; discussion 298–299.Google Scholar
Lenzlinger, PM, Hans, VH, Joller-Jemelka, HI, et al. Markers for cell-mediated immune response are elevated in cerebrospinal fluid and serum after severe traumatic brain injury in humans. J Neurotrauma. 2001;18(5):479489.CrossRefGoogle ScholarPubMed
Ravizza, T, Gagliardi, B, Noe, F, et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29(1):142160.Google Scholar
Mukherjee, S, Bricker, PC, Shapiro, LA. Alteration of hippocampal cytokines and astrocyte morphology observed in rats 24 hour after fluid percussion injury. J Neurol Disord Stroke. 2014;2(4):1078.Google Scholar
Vezzani, A, Ravizza, T, Balosso, S, Aronica, E. Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia. 2008;49(Suppl 2):2432.Google Scholar
Alapirtti, T, Rinta, S, Hulkkonen, J, et al. Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: a video-EEG study. J Neurol Sci. 2009;280(1–2):9497.CrossRefGoogle ScholarPubMed
Quirico-Santos, T, Meira, ID, Gomes, AC, et al. Resection of the epileptogenic lesion abolishes seizures and reduces inflammatory cytokines of patients with temporal lobe epilepsy. J Neuroimmunol. 2013;254(1–2):125130.CrossRefGoogle ScholarPubMed
Strauss, KI, Elisevich, KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation. 2016;13(1):270.Google Scholar
Sinha, S, Patil, SA, Jayalekshmy, V, Satishchandra, P. Do cytokines have any role in epilepsy? Epilepsy Res. 2008;82(2–3):171176.CrossRefGoogle ScholarPubMed
Erickson, MA, Morofuji, Y, Owen, JB, Banks, WA. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells. J Pharmacol Exp Ther. 2014;349(3):497507.Google Scholar
Sutton, C, Brereton, C, Keogh, B, Mills, KH, Lavelle, EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203(7):16851691.Google Scholar
Pollard, JR, Eidelman, O, Mueller, GP, et al. The TARC/sICAM5 ratio in patient plasma is a candidate biomarker for drug resistant epilepsy. Front Neurol. 2012;3:181.Google Scholar
Lyck, R, Enzmann, G. The physiological roles of ICAM-1 and ICAM-2 in neutrophil migration into tissues. Curr Opin Hematol. 2015;22(1):5359.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×