Skip to main content
×
Home
  • Print publication year: 2017
  • Online publication date: May 2017

17 - Quantum Turbulence in Atomic Bose-Einstein Condensates

from Part III - Condensates in Atomic Physics
Summary

The past decade has seen atomic Bose-Einstein condensates emerge as a promising prototype system to explore the quantum mechanical form of turbulence, buoyed by a powerful experimental toolbox to control and manipulate the fluid, and the amenity to describe the system from first principles. This chapter presents an overview of this topic, from its history and fundamental motivations, its characteristics and key results to date, and finally to some promising future directions.

A Quantum Storm in a Teacup

A befitting title to this chapter could have been “a quantum storm in a teacup.” The storm refers to a turbulent state of a fluid, teeming with swirls and waves. Quantum refers to the fact that the fluid is not the classical viscous fluid of conventional storms but rather a quantum fluid in which viscosity is absent and the swirls are quantized. The quantum fluid in our story is a quantum-degenerate gas of bosonic atoms, an atomic Bose-Einstein condensate (BEC), formed at less than a millionth of a degree above absolute zero. And finally the teacup refers to the bowl-like potential used to confine the gas; this makes the fluid inherently inhomogeneous and finite-sized. A typical image of our quantum storm in a teacup is shown in Fig. 17.1a.

This chapter reviews quantum turbulence in atomic condensates, tracing its history (Section 17.2), introducing the main theoretical approach (Section 17.3) and the underyling quantum vortices (Section 17.4).We then turn to describing physical characteristics (Section 17.5), the experimental observations to date (Section 17.6), methods of generating turbulence (Section 17.7), and some exciting research directions (Section 17.8) before presenting an outlook (Section 17.9).

Origins

Turbulence refers to a highly agitated, disordered, and nonlinear fluid motion, characterized by the presence of eddies and energy across a range of length and time scales [3]. It occurs ubiquitously in nature, from blood flow and waterways to atmospheres and the interstellar medium, and is of practical importance in many industrial and engineering contexts. Since da Vinci's first scientific study of turbulent flow of water past obstacles, circa 1507, research into turbulence in classical viscous fluids continues with vigor; however, due to its rich complexities, the physical essence and mathematical description of turbulence remain a challenge.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Universal Themes of Bose-Einstein Condensation
  • Online ISBN: 9781316084366
  • Book DOI: https://doi.org/10.1017/9781316084366
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
[1] White A. C., Barenghi C. F., Proukakis N. P., Youd A. J., and Wacks D. H. 2010. Nonclassical velocity statistics in a turbulent atomic Bose-Einstein condensate. Phys. Rev. Lett., 104, 075301.
[2] Baggaley A. W., Laurie J., and Barenghi C. F. 2012. Vortex-density fluctuations, energy spectra, and vortical regions in superfluid turbulence. Phys. Rev. Lett., 109, 205304.
[3] Frisch U. 1995. Turbulence: The Legacy of Kolmogorov. Cambridge, UK: Cambridge University Press.
[4] Feynman R. P. 1955. Application of quantum mechanics to liquid helium. Progress in Low Temperature Physics, 1, 17–53.
[5] Gorter C. J. 1949. The two fluid model for helium II. Il Nuovo Cimento Series 9, 245–250.
[6] Donnelly R. J., and Swanson C. E. 2006. Quantum turbulence. J. Fluid Mech., 173, 387.
[7] Feynman R., Leighton R. B., and Sands M. 1964. The Feynman Lectures on Physics. Boston, MA: Addison-Wesley.
[8] Vinen W. F. 1957. Mutual friction in a heat current in liquid helium II. I. Experiments on steady heat currents. Proc. R. Soc. A, 240, 114–127.
[9] Maurer J., and Tabeling P. 1998. Local investigation of superfluid turbulence. Europhys. Lett., 43, 29.
[10] Salort J., Baudet C., Castaing B., Chabaud B., Daviaud F., Didelot T., Diribarne P., Dubrulle B., Gagne Y., Gauthier F., Girard A., Hbral B., Rousset B., Thibault P., and Roche P.-E. 2010. Turbulent velocity spectra in superfluid flows. Phys. Fluids, 22, 125102.
[11] Skrbek L. 2011. Quantum turbulence. J. Phys. Conf. Ser., 318, 012004.
[12] Barenghi C. F., Skrbek L., and Sreenivasan K. R. 2014. Introduction to quantum turbulence. Proc. Nat. Acad. Sci., 111(Supplement 1), 4647–4652.
[13] Kerr R. M. 2011. Vortex stretching as a mechanism for quantum kinetic energy decay. Phys. Rev. Lett., 106, 224501.
[14] Baggaley A. W., Barenghi C. F., and Sergeev Y. A. 2014. Three-dimensional inverse energy transfer induced by vortex reconnections. Phys. Rev. E, 89, 013002.
[15] Walmsley P. M., and Golov A. I. 2008. Quantum and quasiclassical types of superfluid turbulence. Phys. Rev. Lett., 100, 245301.
[16] Baggaley A. W., Barenghi C. F., and Sergeev Y. A. 2012. Quasiclassical and ultraquantum decay of superfluid turbulence. Phys. Rev. B, 85, 060501.
[17] Guo W., Cahn S. B., Nikkel J. A., Vinen W. F., and McKinsey D. N. 2010. Visualization study of counterflow in superfluid 4He using metastable helium molecules. Phys. Rev. Lett., 105, 045301.
[18] Bradley D. I., Fisher S. N., Guenault A. M., Haley R. P., Pickett G. R., Potts D., and Tsepelin V. 2011. Direct measurement of the energy dissipated by quantum turbulence. Nat. Phys., 7, 473.
[19] Hosio J. J., Eltsov V. B., Heikkinen P. J., Hänninen R., Krusius M., and L'vov V. S. 2013. Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures. Nat. Comm., 4, 1614.
[20] Krstulovic G. 2012. Kelvin-wave cascade and dissipation in low-temperature superfluid vortices. Phys. Rev. E, 86, 055301.
[21] Kozik E., and Svistunov B. 2004. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett., 92, 035301.
[22] Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E., and Cornell E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198.
[23] Davis K. B., Mewes M. O., Andrews M. R., van Druten N. J., Durfee D. S., Kurn D. M., and Ketterle W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969.
[24] Inouye S., Andrews M. R., Stenger J., Miesner H.-J., Stamper-Kurn D. M., and Ketterle W. 1998. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature, 392, 151.
[25] Henderson K., Ryu C., MacCormick C., and Boshier M. G. 2009. Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates. New J. Phys., 11, 043030.
[26] Görlitz A., Vogels J. M., Leanhardt A. E., Raman C., Gustavson T. L., Abo-Shaeer J. R., Chikkatur A. P., Gupta S., Inouye S., Rosenband T., and Ketterle W. 2001. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett., 87, 130402.
[27] Kevrekidis P. G., Frantzeskakis D. J., and Carretero-Gonzalez R. (eds). 2008. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment. Berlin, Germany: Springer.
[28] Tsubota M., Kobayashi M., and Takeuchi H. 2013. Quantum hydrodynamics. Phys. Rep., 522, 192–238.
[29] Allen A. J., Parker N. G., Proukakis N. P., and Barenghi C. F. 2014. Quantum turbulence in atomic Bose-Einstein condensates. J. Phys.: Conf. Ser., 544, 012023.
[30] White A. C., Anderson B. P., and Bagnato V. S. 2014. Vortices and turbulence in trapped atomic condensates. Proc. Nat. Acad. Sci., 111(Supplement 1), 4719–4726.
[31] Berloff N. G., and Svistunov B. V. 2002. Scenario of strongly nonequilibrated Bose- Einstein condensation. Phys. Rev. A, 66, 013603.
[32] Parker N. G., and Adams C. S. 2005. Emergence and decay of turbulence in stirred atomic Bose-Einstein condensates. Phys. Rev. Lett., 95, 145301.
[33] Kobayashi M., and Tsubota M. 2007. Quantum turbulence in a trapped Bose- Einstein condensate. Phys. Rev. A, 76, 045603.
[34] Tsubota M., and Kobayashi M. 2008. Quantum turbulence in trapped atomic Bose- Einstein condensates. J. Low Temp. Phys., 150, 402–409.
[35] Henn E., Seman J., Roati G., Magalhatidle;es K., and Bagnato V. 2009. Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett., 103, 045301.
[36] Neely T. W., Samson E. C., Bradley A. S., Davis M. J., and Anderson B. P. 2010. Observation of vortex dipoles in an oblate Bose-Einstein condensate. Phys. Rev. Lett., 104, 160401.
[37] Kwon W. J., Moon G., Choi J., Seo S. W., and Shin Y. 2014. Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A, 90, 063627.
[38] Pethick C. J., and Smith H. 2002. Bose-Einstein Condensation in Dilute Gases. Cambridge, UK: Cambridge University Press.
[39] Dalfovo Franco, Giorgini Stefano, Pitaevskii Lev P., and Stringari Sandro. 1999. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys., 71, 463–512.
[40] Proukakis Nick P., and Jackson Brian. 2008. Finite-temperature models of Bose- Einstein condensation. J. Phys. B, 41, 203002.
[41] Blakie P. B., Bradley A. S., Davis M. J., Ballagh R. J., and Gardiner C. W. 2008. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys., 57, 363–455.
[42] Proukakis N. P., Gardiner S. A., Davis M. J., and Szymańska M. H. (eds). 2013. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. London, UK: Imperial College Press.
[43] Berloff N. G., Brachet M., and Proukakis N. P. 2014. Modeling quantum fluid dynamics at nonzero temperatures. Proc. Nat. Acad. Sci., 111(Supplement 1), 4675–4682.
[44] Berloff Natalia G., and Roberts Paul H. 1999. Motions in a Bose condensate: VI. Vortices in a nonlocal model. J. Phys. A, 32, 5611.
[45] Kuchemann D. 1965. Report on the I.U.T.A.M symposium on concentrated vortex motions in fluids. J. Fluid Mech., 21, 1–20.
[46] Leanhardt A. E., Görlitz A., Chikkatur A. P., Kielpinski D., Shin Y., Pritchard D. E., and Ketterle W. 2002. Imprinting vortices in a Bose-Einstein condensate using topological phases. Phys. Rev. Lett., 89, 190403.
[47] Middelkamp S., Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Carretero- González R., Schmelcher P., Freilich D. V., and Hall D. S. 2011. Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates. Phys. Rev. A, 84, 011605.
[48] Aref H. 2007. Point vortex dynamics: a classical mathematics playground. J. Math. Phys., 48, 065401.
[49] Jackson B., Proukakis N. P., Barenghi C. F., and Zaremba E. 2009. Finitetemperature vortex dynamics in Bose-Einstein condensates. Phys. Rev. A, 79, 053615.
[50] Rooney S. J., Bradley A. S., and Blakie P. B. 2010. Decay of a quantum vortex: test of nonequilibrium theories for warm Bose-Einstein condensates. Phys. Rev. A, 81, 023630.
[51] Allen A. J., Zaremba E., Barenghi C. F., and Proukakis N. P. 2013. Observable vortex properties in finite-temperature Bose gases. Phys. Rev. A, 87, 013630.
[52] Gautam S., Roy Arko, and Mukerjee Subroto. 2014. Finite-temperature dynamics of vortices in Bose-Einstein condensates. Phys. Rev. A, 89, 013612.
[53] Thompson L., and Stamp P. C. E. 2012. Quantum dynamics of a Bose superfluid vortex. Phys. Rev. Lett., 108, 184501.
[54] Madison K. W., Chevy F., Wohlleben W., and
Dalibard|J. 2000. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett., 84, 806–809.
[55] Freilich D. V., Bianchi D.M., Kaufman A. M., Langin T. K., and Hall D. S. 2010. Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate. Science, 329, 1182.
[56] Kwon W. J., Seo S. W., and Shin Y. 2015. Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate. Phys. Rev. A, 92, 033613.
[57] Anderson B. P., Haljan P. C., Regal C. A., Feder D. L., Collins L. A., Clark C. W., and Cornell E. A. 2001. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett., 86, 2926–2929.
[58] Hodby E., Hechenblaikner G. A., Hopkins S. M., Marago O., and Foot C. J. 2001. Vortex nucleation in Bose-Einstein condensates in an oblate, purely magnetic potential. Phys. Rev. Lett., 88, 010405.
[59] Abo-Shaeer J. R., Raman C., Vogels J. M., and Ketterle W. 2001. Observation of vortex lattices in Bose-Einstein condensates. Science, 292, 476.
[60] Neely T. W., Bradley A. S., Samson E. C., Rooney S. J., Wright E. M., Law K. J. H., Carretero-González R., Kevrekidis P. G., Davis M. J., and Anderson B. P. 2013. Characteristics of two-dimensional quantum turbulence in a compressible superfluid. Phys. Rev. Lett., 111, 235301.
[61] Kibble T. W. B. 1976. Topology of cosmic domains and strings. J. Physics A, 9, 1387.
[62] Zurek W. H. Cosmological experiments in superfluid helium? Nature, 317.
[63] Weiler C. N., Neely T. W., Scherer D. R., Bradley A. S., Davis M. J., and Anderson B. P. 2008. Spontaneous vortices in the formation of Bose-Einstein condensates. Nature, 455, 948.
[64] Raman C., Abo-Shaeer J. R., Vogels J. M., Xu K., and Ketterle W. 2001. Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett., 87, 210402.
[65] Kwon W. J., Moon G., Seo S. W., and Shin Y. 2015. Critical velocity for vortex shedding in a Bose-Einstein condensate. Phys. Rev. A, 91, 053615.
[66] Powis A. T., Sammut S. J., and Simula T. P. 2014. Vortex gyroscope imaging of planar superfluids. Phys. Rev. Lett., 113, 165303.
[67] Nore C., Abid M., and Brachet M. E. 1997. Decaying Kolmogorov turbulence in a model of superflow. Phys. Fluids, 9, 2644.
[68] Kobayashi M., and Tsubota M. 2005. Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation. Phys. Rev. Lett., 94, 065302.
[69] Yepez J., Vahala G., Vahala L., and Soe M. 2009. Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades. Phys. Rev. Lett., 103, 084501.
[70] Paoletti M. S., Fisher Michael E., Sreenivasan K. R., and Lathrop D.P. 2008. Velocity statistics distinguish quantum turbulence from classical turbulence. Phys. Rev. Lett., 101, 154501.
[71] Baggaley A.W., and Barenghi C.F. 2011. Quantum turbulent velocity statistics and quasiclassical limit. Phys. Rev. E, 84, 067301.
[72] Mantia M. La, and Skrbek L. 2014. Quantum, or classical turbulence? Europhys. Lett., 105, 46002.
[73] Proment D., Nazarenko S., and Onorato M. 2009. Quantum turbulence cascades in the Gross-Pitaevskii model. Phys. Rev. A, 80, 051603.
[74] Gaunt A. L., Schmidutz T. F., Gotlibovych I., Smith R. P., and Hadzibabic Z. 2013. Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett., 110, 200406.
[75] Kraichnan R. H., and Montgomery D. 1980. Two-dimensional turbulence. Rep. Prog. Phys., 43, 547.
[76] Boffetta G., and Ecke R.E. 2012. Two-dimensional turbulence. Annu. Rev. Fluid Mech., 44, 427–451.
[77] Reeves M. T., Billam T. P., Anderson B. P., and Bradley A. S. 2013. Inverse energy cascade in forced two-dimensional quantum turbulence. Phys. Rev. Lett., 110, 104501.
[78] Reeves M. T., Billam T. P., Anderson B. P., and Bradley A. S. 2014. Signatures of coherent vortex structures in a disordered two-dimensional quantum fluid. Phys. Rev. A, 89, 053631.
[79] Bradley A. S., and Anderson B. P. 2012. Energy spectra of vortex distributions in two-dimensional quantum turbulence. Phys. Rev. X, 2, 041001.
[80] Nazarenko Sergey, and Onorato Miguel. 2006. Wave turbulence and vortices in Bose-Einstein condensation. Physica D, 219, 1–12.
[81] Reeves M. T., Anderson B. P., and Bradley A. S. 2012. Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates. Phys. Rev. A, 8686, 053621.
[82] Barenghi C. F., Parker N. G., Proukakis N. P., and Adams C. S. 2005. Decay of quantised vorticity by sound emission. J. Low Temp. Phys., 138, 629–634.
[83] Zuccher S., Caliari M., Baggaley A.W., and Barenghi C. F. 2012. Quantum vortex reconnections. Phys. Fluids, 24, 125108.
[84] Parker N. G., Proukakis N. P., Barenghi C. F., and Adams C. S. 2004. Controlled vortex-sound interactions in atomic Bose-Einstein condensates. Phys. Rev. Lett., 92, 160403.
[85] Leadbeater M., Winiecki T., Samuels D. C., Barenghi C. F., and Adams C. S. 2001. Sound emission due to superfluid vortex reconnections. Phys. Rev. Lett., 86, 1410–1413.
[86] Allen A. J., Zuccher S., Caliari M., Proukakis N. P., Parker N. G., and Barenghi C. F. 2014. Vortex reconnections in atomic condensates at finite temperature. Phys. Rev. A, 90, 013601.
[87] Bewley G. P., Paoletti M. S., Sreenivasan K. R., and Lathrop D. P. 2008. Characterization of reconnecting vortices in superfluid helium. Proc. Nat. Acad. Sci., 105, 13707–13710.
[88] Vinen W. F. 2001. Decay of superfluid turbulence at a very low temperature: the radiation of sound from a Kelvin wave on a quantized vortex. Phys. Rev. B, 64, 134520.
[89] Arovas D. P., and Freire J. A. 1997. Dynamical vortices in superfluid films. Phys. Rev. B, 55, 1068–1080.
[90] Parker N. G., Allen A. J., Barenghi C. F., and Proukakis N. P. 2012. Coherent cross talk and parametric driving of matter-wave vortices. Phys. Rev. A, 86, 013631.
[91] Lucas A., and Surówka P. 2014. Sound-induced vortex interactions in a zerotemperature two-dimensional superfluid. Phys. Rev. A, 90, 053617.
[92] Parker N. G., van Bijnen R. M. W., and Martin A. M. 2006. Instabilities leading to vortex lattice formation in rotating Bose-Einstein condensates. Phys. Rev. A, 7373, 061603.
[93] Lamporesi G., Donadello S., Serafini S., Dalfovo F., and Ferrari G. 2013. Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate. Nat. Phys., 9, 656.
[94] Caracanhas M., Fetter A. L., Muniz S. R., Magalhes K. M. F., Roati G., Bagnato G., and Bagnato V. S. 2012. Self-similar expansion of the density profile in a turbulent Bose-Einstein condensate. J. Low Temp. Phys., 166, 49–58.
[95] Thompson K. J., Bagnato G. G., Telles G. D., Caracanhas M. A., dos Santos F. E. A., and Bagnato V. S. 2014. Evidence of power law behavior in the momentum distribution of a turbulent trapped Bose-Einstein condensate. Laser Phys. Lett., 11, 015501.
[96] Frisch T., Pomeau Y., and Rica S. 1992. Transition to dissipation in a model of superflow. Phys. Rev. Lett., 69, 1644–1647.
[97] Stagg G. W., Allen A. J., Barenghi C. F., and Parker N. G. 2015a. Classical-like wakes past elliptical obstacles in atomic Bose-Einstein condensates. J. Phys. Conf. Ser., 594, 012044.
[98] Stagg G. W., Allen A. J., Parker N. G., and Barenghi C. F. 2015b. Generation and decay of two-dimensional quantum turbulence in a trapped Bose-Einstein condensate. Phys. Rev. A, 91, 013612.
[99] Allen A. J., Parker N. G., Proukakis N. P., and Barenghi C. F. 2014. Isotropic vortex tangles in trapped atomic Bose-Einstein condensates via laser stirring. Phys. Rev., 89, 025602.
[100] Stagg G. W., Parker N. G., and Barenghi C. F. 2014. Quantum analogues of classical wakes in Bose-Einstein condensates. J. Phy. B, 47, 095304.
[101] Brachmann J. F. S., Bakr W. S., Gillen J., Peng A., and Greiner M. 2011. Inducing vortices in a Bose-Einstein condensate using holographically produced light beams. Opt. Express, 19, 12984–12991.
[102] Horng T.-L., Hsueh C.-H., and Gou S.-C. 2008. Transition to quantum turbulence in a Bose-Einstein condensate through the bending-wave instability of a singlevortex ring. Phys. Rev. A, 77, 063625.
[103] Horng T.-L., Hsueh C.-H., Su S.-W., Kao Y.-M., and Gou S.-C. 2009. Two dimensional quantum turbulence in a nonuniform Bose-Einstein condensate. Phys. Rev. A, 80, 023618.
[104] Schweikhard V., Coddington I., Engels P., Tung S., and Cornell E. A. 2004. Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. Phys. Rev. Lett., 93, 210403.
[105] Wright T. M., Ballagh R. J., Bradley A. S., Blakie P. B., and Gardiner C. W. 2008. Dynamical thermalization and vortex formation in stirred two-dimensional Bose-Einstein condensates. Phys. Rev. A, 78, 063601.
[106] White A. C., Barenghi C. F., and Proukakis N. P. 2012. Creation and characterization of vortex clusters in atomic Bose-Einstein condensates. Phys. Rev. A, 86, 013635.
[107] Cidrim A., dos Santos F. E. A., Galantucci L., Bagnato V. S., and Barenghi, C.F. 2016. Controlled polarization of two-dimensional quantum turbulence in atomic Bose-Einstein condensates. Phys. Rev. A, 93, 033651.
[108] Stagg G. W., Pattinson R. W., Barenghi C. F., and Parker N. G. 2016. Critical velocity for vortex nucleation in a finite-temperature Bose gas. Phys. Rev. A, 93, 023640.
[109] Griesmaier A., Werner J., Hensler S., Stuhler J., and Pfau T. 2005. Bose-Einstein condensation of chromium. Phys. Rev. Lett., 94, 160401.
[110] Lu M., Burdick N. Q., Youn S. H., and Lev B. L. 2011. Strongly dipolar Bose- Einstein condensate of dysprosium. Phys. Rev. Lett., 107, 190401.
[111] Aikawa K., Frisch A., Mark M., Baier S., Rietzler A., Grimm R., and Ferlaino F. 2012. Bose-Einstein condensation of erbium. Phys. Rev. Lett., 108, 210401.
[112] Lahaye T., Menotti C., Santos L., Lewenstein M., and Pfau T. 2009. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys., 72, 126401.
[113] Mulkerin B. C., van Bijnen R. M. W., O'Dell D. H. J., Martin A. M., and Parker N. G. 2013. Anisotropic and long-range vortex interactions in two-dimensional dipolar Bose gases. Phys. Rev. Lett., 111, 170402.
[114] Mulkerin B. C., O'Dell D. H. J., Martin A. M., and Parke N. G. 2014. Vortices in the two-dimensional dipolar Bose gas. J. Phys. Conf. Ser., 497, 012025.
[115] Pattinson R. W., Proukakis N. P., and Parker N. G. In preparation. Quantum turbulence via repeated interspecies interaction quenches of a binary Bose gas at finite temperature.
[116] Eyink Gregory L., and Sreenivasan Katepalli R. 2006. Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys., 78, 87–135.
[117] Billam T. P., Reeves M. T., Anderson B. P., and Bradley A. S. 2014. Onsager- Kraichnan condensation in decaying two-dimensional quantum turbulence. Phys. Rev. Lett., 112, 145301.
[118] Simula T., Davis M. J., and Helmerson K. 2014. Emergence of order from turbulence in an isolated planar superfluid. Phys. Rev. Lett., 113, 165302.
[119] Takeuchi H., Ishino S., and Tsubota M. 2010. Binary quantum turbulence arising from countersuperflow instability in two-component Bose-Einstein condensates. Phys. Rev. Lett., 105, 205301.
[120] Kobyakov D., Bezett A., Lundh E., Marklund M., and Bychkov V. 2014. Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Phys. Rev. A, 89, 013631.
[121] Karl M., Nowak B., and Gasenzer T. 2013. Tuning universality far from equilibrium. Sci. Rep., 3, 2394.
[122] Kasamatsu K., Tsubota M., and Ueda M. 2005. Vortices in multicomponent Bose- Einstein condensates. Int. J. Mod. Phys. B, 19, 1835–1904.
[123] Stamper-Kurn D. M., and Ueda M. 2013. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys., 85, 1191–1244.
[124] Fujimoto K., and Tsubota M. 2012. Counterflow instability and turbulence in a spin-1 spinor Bose-Einstein condensate. Phys. Rev. A, 85, 033642.
[125] Fujimoto K., and Tsubota M. 2014. Spin-superflow turbulence in spin-1 ferromagnetic spinor Bose-Einstein condensates. Phys. Rev. A, 90, 013629.
[126] Berloff N. G. 2010. Turbulence in exciton-polariton condensates. arXiv:1010.5225.