Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T21:06:32.768Z Has data issue: false hasContentIssue false

9 - Internal Flame Processes

Published online by Cambridge University Press:  05 October 2012

Tim C. Lieuwen
Affiliation:
Georgia Institute of Technology
Get access

Summary

Chapter 8 considered ignition and the processes associated with autoignition and forced ignition of a nonreactive mixture. In this chapter, we focus on premixed and non-premixed flames and the key physics controlling burning rates and extinction processes. Section 9.1 summarizes basic issues associated with the structure and burning rate of steady, premixed flames in one-dimensional flow fields. This includes discussions of the effects of pressure, temperature, and stoichiometry on burning rates. Section 9.2 discusses how these one-dimensional characteristics are altered by stretch; that is, fluid mechanic shear or flame curvature. We then discuss how these lead to changes in burning rate and, for large enough levels of stretch, cause the flame to extinguish. Section 9.3 treats the effects of unsteadiness in pressure, fuel/air ratio, and stretch rate. Specifically, we discuss how the flame acts as a low pass filter to disturbances in most cases, and that its sensitivity to disturbances diminishes with increasing frequency. These results have important implications for many combustion instability phenomena, in which the flame is perturbed by time varying flow and composition variations.

We then move to non-premixed flames. Section 9.4 reviews non-premixed flames in the fast chemistry limit, and Section 9.5 discusses finite rate kinetic effects. This section shows that large gradients in fuel and oxidizer concentrations can lead to flame extinction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Neophytou, A.Mastorakos, E.Cant, R.DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layersCombustion and Flame 2010 157 1071CrossRefGoogle Scholar
Glassman, I.Yetter, R.A.Combustion 2008 Academic PressGoogle Scholar
Law, C.K.Combustion Physics 2006 Cambridge University PressCrossRefGoogle Scholar
Turns, S.RAn Introduction to Combustion: Concepts and Applications 2001 McGraw-HillGoogle Scholar
Smith, G.P.Golden, D.M.Frenklach, M.Moriarty, N.W.Eiteneer, B.Goldenberg, M.Bowman, T.Hanson, R.K.Song, S.Gardiner, W.C.J.Lissianski, V.V.Qin, Z.http://www.me.berkeley.edu/gri_mech/
Chemical-kinetic mechanisms for combustion applications 2005 http://www.mae.ucsd.edu/~combustion/cermech/
Davis, S.G.Joshi, A.V.Wang, H.Egolfopoulos, F.An optimized kinetic model of H2/CO combustionProceedings of the Combustion Institute 2005 30 1283CrossRefGoogle Scholar
Lowry, W.de Vries, J.Krejci, M.Petersen, E.Serinyel, Z.Metcalfe, W.Curran, H.Bourque, G.Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressuresJournal of Engineering for Gas Turbines and Power 2011 133 091501CrossRefGoogle Scholar
Kochar, Y.N.Vaden, S.N.Lieuwen, T.C.Seitzman, J.M. 2010
Vagelopoulos, C.Egolfopoulos, F.Law, C.Further considerations on the determination of laminar flame speeds with the counterflow twin-flame techniqueTwenty-Fifth Symposium (International) on Combustion/The Combustion Institute 1994 25Google Scholar
Vagelopoulos, C.M.Egolfopoulos, F.N.Direct experimental determination of laminar flame speedsTwenty-Seventh Symposium (International) on Combustion / The Combustion Institute 1998 27Google Scholar
Smallbone, A.Liu, W.Law, C.You, X.Wang, H.Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of -heptaneProceedings of the Combustion Institute 2009 32 1245CrossRefGoogle Scholar
Dowdy, D.R.Smith, D.B.Taylor, S.C.Williams, A.The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixturesTwenty-Third Symposium (International) on Combustion/ The Combustion Institute 1991 23 (1) 325CrossRefGoogle Scholar
McLean, I.C.Smith, D.B.Taylor, S.C.The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reactionTwenty-Fifth Symposium (International) on Combustion/ The Combustion Institute 1994 25Google Scholar
Qiao, L.Kim, C.Faeth, G.Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flamesCombustion and Flame 2005 143 79CrossRefGoogle Scholar
Amato, A.Hudak, B.D’Carlo, P.Noble, D.Scarborough, D.Seitzman, J.Lieuwen, T.Methane oxycombustion for low CO2 cycles: Blowoff measurements and analysisJournal of Engineering for Gas Turbines and Power 2011 133 061503CrossRefGoogle Scholar
Burke, M.P.Chaos, M.Dryer, F. L.Ju, Y.Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperaturesCombustion and Flame 2010 157 618CrossRefGoogle Scholar
Burke, M.P.Dryer, F.L.Ju, Y.Assessment of kinetic modeling for lean H2/CH4/O2/diluent flames at high pressuresProceedings of the Combustion Institute 2011 33 905CrossRefGoogle Scholar
Groot, G.van Oijen, J.de Goey, L.Seshadri, K.Peters, N.The effects of strain and curvature on the mass burning rate of premixed laminar flamesCombustion Theory and Modelling 2002 6 675CrossRefGoogle Scholar
Williams, F.A.Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems 1994 Perseus BooksGoogle Scholar
Tseng, L.K.Ismail, M.A.Faeth, G.M.Laminar burning velocities and Markstein numbers of hydrocarbon/air flamesCombustion and Flame 1993 95 410CrossRefGoogle Scholar
Aggarwal, S.K.Extinction of laminar partially premixed flamesProgress in Energy and Combustion Science 2009 35 528CrossRefGoogle Scholar
Gran, I.R.Echekki, T.Chen, J.H.Negative flame speed in an unsteady 2-D premixed flame: a computational studyTwenty-Sixth Symposium (International) on Combustion 1996 26 323CrossRefGoogle Scholar
Poinsot, T.Veynante, D.Theoretical and Numerical Combustion 2005 RT EdwardsGoogle Scholar
Sankaran, R.Im, H.G.Effects of hydrogen addition on the Markstein length and flammability limit of stretched methane/air premixed flamesCombustion Science and Technology 2006 1585CrossRefGoogle Scholar
Poinsot, T.Echekki, T.Mungal, M.A study of the laminar flame tip and implications for premixed turbulent combustionCombustion Science and Technology 1992 81 45CrossRefGoogle Scholar
Wang, P.Hu, S.Wehrmeyer, J.A.Pitz, R.W.Stretch and curvature effects on flames42nd AIAA Aerospace Sciences Meeting and Exhibit, Paper # AIAA 2004–148 2004 RenoNV1Google Scholar
Jackson, G.S.Sai, R.Plaia, J.M.Boggs, C.M.Kiger, K.T.Influence of H2 on the response of lean premixed CH4 flames to high strained flowsCombustion and Flame 2003 132 503CrossRefGoogle Scholar
Shanbhogue, S.J.Husain, S.Lieuwen, T.Lean blowoff of bluff body stabilized flames: scaling and dynamicsProgress in Energy and Combustion Science 2009 35 98CrossRefGoogle Scholar
Egolfopoulos, F.N.Geometric and radiation effects on steady and unsteady strained laminar flamesTwenty-Fifth Symposium (International) on Combustion 1994 25 1375CrossRefGoogle Scholar
Lieuwen, T.Neumeier, Y.Zinn, B.The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustorsCombustion Science and Technology 1998 135 193CrossRefGoogle Scholar
Welle, E.J.Roberts, W.L.Carter, C.D.Donbar, J.M.The response of a propane-air counter-flow diffusion flame subjected to a transient flow fieldCombustion and Flame 2003 135 285CrossRefGoogle Scholar
Sung, C.Liu, J.Law, C.Structural response of counterflow diffusion flames to strain rate variationsCombustion and Flame 1995 102 481CrossRefGoogle Scholar
Peters, N.Turbulent Combustion 2000 Cambridge University PressCrossRefGoogle Scholar
Kee, R.J.Coltrin, M.EGlarborg, P.Chemically Reacting Flow: Theory and Practice 2003 John Wiley & SonsCrossRefGoogle Scholar
Barlow, R.Dibble, R.Chen, J.Y.Lucht, R.Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flamesCombustion and Flame 1990 82 3235CrossRefGoogle Scholar
Sutton, J.A.Driscoll, J.F.Imaging of local flame extinction due to the interaction of scalar dissipation layers and the stoichiometric contour in turbulent non-premixed flamesProceedings of the Combustion Institute 2007 31 1487CrossRefGoogle Scholar
Won, S.H.Dooley, S.Dryer, F.L.Ju, Y.Kinetic effects of aromatic molecular structures on diffusion flame extinctionProceedings of the Combustion Institute 2011 33 1163CrossRefGoogle Scholar
Mastorakos, E.Taylor, A.Whitelaw, J.Scalar dissipation rate at the extinction of turbulent counterflow nonpremixed flamesCombustion and Flame 1992 91 55CrossRefGoogle Scholar
Peters, N.Length scales in laminar and turbulent flames. Numerical approaches to combustion modelingWashington, DCAmerican Institute of Aeronautics and Astronautics, Inc 1991 155Google Scholar
Ihme, M.Cha, C.M.Pitsch, H.Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approachProceedings of the Combustion Institute 2005 30 793CrossRefGoogle Scholar
Carnell, W.F.Renfro, M.W.Stable negative edge flame formation in a counterflow burnerCombustion and Flame 2005 141 350CrossRefGoogle Scholar
Rajaram, R.Lieuwen, T.Parametric studies of acoustic radiation from premixed flamesCombustion Science and Technology 2003 175 2269CrossRefGoogle Scholar
Chaudhuri, S.Kostka, S.Tuttle, S.G.Renfro, M.W.Cetegen, B.M.Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustorCombustion and Flame 2011 158 1358CrossRefGoogle Scholar
Smith, C.Nickolaus, D.Leach, T.Kiel, B.Garwick, K.LES Blowout Analysis of Premixed Flow Past V-Gutter Flameholder45th AIAA Aerospace Sciences Meeting and Exhibit 2007 Reno, NVGoogle Scholar
Barlow, R.Ozarovsky, H.Karpetis, A.Lindstedt, R.Piloted jet flames of CH4/H2/air: Experiments on localized extinction in the near field at high Reynolds numbersCombustion and Flame 2009 156 2117CrossRefGoogle Scholar
Dunn, M.Masri, A.Bilger, R.Barlow, R.Wang, G.H.The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflowProceedings of the Combustion Institute 2009 32 1779CrossRefGoogle Scholar
Lindstedt, R.Ozarovsky, H.Barlow, R.Karpetis, A.Progression of localized extinction in high Reynolds number turbulent jet flamesProceedings of the Combustion Institute 2007 31 1551CrossRefGoogle Scholar
Dunn, M.J.Masri, A.R.Bilger, R.W.A new piloted premixed jet burner to study strong finite-rate chemistry effectsCombustion and Flame 2007 151 46CrossRefGoogle Scholar
Owston, R.Abraham, J.Structure of hydrogen triple flames and premixed flames comparedCombustion and Flame 2010 157 1552CrossRefGoogle Scholar
Buckmaster, J.Edge-flamesProgress in Energy and Combustion Science 2002 28 435CrossRefGoogle Scholar
Buckmaster, J.Edge-flames and their stabilityCombustion Science and Technology 1996 115 141CrossRefGoogle Scholar
Im, H.Chen, J.Structure and propagation of triple flames in partially premixed hydrogen-air mixturesCombustion and Flame 1999 119 436CrossRefGoogle Scholar
Liu, J. B.Ronney, P.D.Premixed edge-flames in spatially-varying straining flowsCombustion Science and Technology 1999 144 21CrossRefGoogle Scholar
Daou, R.Daou, J.Dold, J.Effect of volumetric heat loss on triple-flame propagationProceedings of the Combustion Institute 2002 29 1559CrossRefGoogle Scholar
Cha, M.SRonney, P.D.Propagation rates of nonpremixed edge flamesCombustion and Flame 2006 146 312CrossRefGoogle Scholar
Vedarajan, T.GBuckmaster, J.Edge-flames in homogeneous mixturesCombustion and Flame 1998 114 267CrossRefGoogle Scholar
Ruetsch, G.Vervisch, L.Martínez, L.Effects of heat release on triple flamesPhysics of Fluids 1995 7 1447CrossRefGoogle Scholar
Ruetsch, G.Vervisch, L.Liñán, A.Effects of heat release on triple flamesPhysics of Fluids 1995 7 1447CrossRefGoogle Scholar
Fernandez-Tarrazo, E.Vera, M.Linan, A.Liftoff and blowoff of a diffusion flame between parallel streams of fuel and airCombustion and Flame 2006 144 1261CrossRefGoogle Scholar
Santoro, V.S.Liñán, A.Gomez, A.Propagation of edge flames in counterflow mixing layers: experiments and theoryProceedings of the Combustion Institute 2000 28 2039CrossRefGoogle Scholar
Daou, R.Daou, J.Dold, J.The effect of heat loss on flame edges in a non-premixed counterflow within a thermo-diffusive modelCombustion Theory and Modelling 2004 8 683Google Scholar
Daou, R.Daou, J.Dold, J.Effect of heat-loss on flame-edges in a premixed counterflowCombustion Theory and Modelling 2003 7 221CrossRefGoogle Scholar
Favier, V.Vervisch, L.Edge flames and partially premixed combustion in diffusion flame quenchingCombustion and Flame 2001 125 788CrossRefGoogle Scholar
Shay, M.LRonney, P.D.Nonpremixed edge flames in spatially varying straining flowsCombustion and Flame 1998 112 1171CrossRefGoogle Scholar
Cho, S.J.Takita, K.Numerical study of premixed twin edge flames in a counterflow fieldCombustion and Flame 2006 144 1370CrossRefGoogle Scholar
Takita, K.Sado, M.Masuya, G.Sakaguchi, S.Experimental study of premixed single edge-flame in a counterflow fieldCombustion and Flame 2004 136 364CrossRefGoogle Scholar
Carnell, W. Jr.Renfro, M.Influence of advective heat flux on extinction scalar dissipation rate and velocity in negative edge flamesCombustion Theory Modelling 2006 10 815CrossRefGoogle Scholar
Bobba, M.K.Flame stabilization and mixing characteristics in a stagnation point reverse flow combustor 2007 PhD ThesisGeorgia Institute of TechnologyGoogle Scholar
Driscoll, J.Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocitiesProgress in Energy and Combustion Science 2008 34 91CrossRefGoogle Scholar
Mastorakos, E.Taylor, A.M.K.P.Whitelaw, J.H.Extinction of turbulent counterflow flames with reactants diluted by hot productsCombustion and Flame 1995 102 101CrossRefGoogle Scholar
Lefebvre, A.H.Ballal, D.R.Gas Turbine Combustion: Alternative Fuels and Emissions 2010 Taylor and FrancisCrossRefGoogle Scholar
Clavin, P.Dynamic behavior of premixed flame fronts in laminar and turbulent flowsProgress in Energy and Combustion Science 1985 11 1CrossRefGoogle Scholar
Aldredge, R.C.Killingsworth, N.J.Experimental evaluation of Markstein-number influence on thermoacoustic instabilityCombustion and Flame 2004 137 1178CrossRefGoogle Scholar
Bychkov, V.V.Liberman, M.A.Dynamics and stability of premixed flamesPhysics Reports 2000 325 115CrossRefGoogle Scholar
Clanet, C.Searby, G.First experimental study of the Darrieus-Landau instabilityPhysical Review Letters 1998 80 3867CrossRefGoogle Scholar
Joulin, G.On the response of premixed flames to time-dependent stretch and curvatureCombustion Science and Technology 1994 97 219CrossRefGoogle Scholar
Park, Y.K.Vlachos, D.G.Isothermal chain-branching, reaction exothermicity, and transport interactions in the stability of methane/air mixturesCombustion and Flame 1998 114 1214CrossRefGoogle Scholar
Kalamatianos, S.Park, Y.K.Vlachos, D.G.Two-parameter continuation algorithms for sensitivity analysis, parametric dependence, reduced mechanisms, and stability criteria of ignition and extinctionCombustion and Flame 1998 112 145CrossRefGoogle Scholar
Bauwens, C.R.L.Bauwens, L.Wierzba, I.Accelerating flames in tubes, an analysisProceedings of the Combustion Institute 2007 31 2381CrossRefGoogle Scholar
Markstein, G.H.Experimental and theoretical studies of flame front stabilityJournal of Aerospace Science 1951 18 199Google Scholar
Cheng, R.K.Turbulent combustion properties of premixed syngasSynthesis Gas Combustion: Fundamentals and ApplicaitonsLieuwen, T.Yang, V.Yetter, R. 2010 CRC129Google Scholar
Aldredge, R.C.Saffman–Taylor influence on flame propagation in thermoacoustically excited flowCombustion Science and Technology 2004 177 53CrossRefGoogle Scholar
Matalon, M.Intrinsic flame instabilities in premixed and nonpremixed combustionAnnual Review of Fluid Mechanics 2007 163CrossRefGoogle Scholar
Zambon, A.Chelliah, H.Acoustic-wave interactions with counterflow single-and twin-premixed flames: Finite-rate kinetics, heat release and phase effectsProceedings of the Combustion Institut 2007 31 1247CrossRefGoogle Scholar
Saitoh, T.Otsuka, Y.Unsteady behavior of diffusion flames and premixed flames for counter flow geometryCombustion Science and Technology 1976 12 135CrossRefGoogle Scholar
Im, H.G.Chen, J.H.Effects of flow transients on the burning velocity of laminar hydrogen/air premixed flamesProceedings of the Combustion Institute 2000 28 1833CrossRefGoogle Scholar
Im, H.Bechtold, J.Law, C.Response of counterflow premixed flames to oscillating strain ratesCombustion and Flame 1996 105 358CrossRefGoogle Scholar
Huang, Z.Bechtold, J.Matalon, M.Weakly stretched premixed flames in oscillating flowsCombustion Theory and Modelling, 1999 2 115CrossRefGoogle Scholar
Egolfopoulos, F.N.Dynamics and structure of unsteady, strained, laminar premixed flamesTwenty-Fifth Symposium (International) on Combustion 1994 25 1365CrossRefGoogle Scholar
Sankaran, R.Im, H.G.Dynamic flammability limits of methane/air premixed flames with mixture composition fluctuationsProceedings of the Combustion Institute, 2002 29 77CrossRefGoogle Scholar
Lauvergne, R.Egolfopoulos, F.N.Unsteady response of C3H8/Air laminar premixed flames submitted to mixture composition oscillationsProceedings of the Combustion Institute 2000 28 1841CrossRefGoogle Scholar
Shamim, T.Atreya, A.Transient response of a radiating flamelet to changes in global stoichiometric conditionsCombustion and Flame 2000 121 59CrossRefGoogle Scholar
Shreekrishna, Lieuwen, T.High frequency response of premixed flames to acoustic disturbances15th AIAA/CEAS Aeroacoustics Conference 2009 Miami, FLGoogle Scholar
Clavin, P.Joulin, G.High-frequency response of premixed flames to weak stretch and curvature: a variable-density analysisCombustion Theory and Modelling 1997 1 429CrossRefGoogle Scholar
McIntosh, A.C.Pressure disturbances of different length scales interacting with conventional flamesCombustion Science and Technology 1991 75 287CrossRefGoogle Scholar
Ledder, G.Kapila, A.The response of premixed flame to pressure perturbationsCombustion Science and Technology 1991 76 21CrossRefGoogle Scholar
van Harten, A.Kapila, A.Matkowsky, B.J.Acoustic coupling of flamesSIAM Journal of Applied Mathematics 1984 44 982CrossRefGoogle Scholar
Peters, N.Ludford, G.S.S.The effect of pressure variation on premixed flamesCombustion Science and Technology 1983 34 331CrossRefGoogle Scholar
Keller, D.Peters, N.Transient pressure effects in the evolution equation for premixed flame frontsTheoretical and Computational Fluid Dynamics 1994 6 141CrossRefGoogle Scholar
McIntosh, A.C.Deflagration fronts and compressibilityPhilosophical Transactions of the Royal Society of London: A 1999 357 3523CrossRefGoogle Scholar
Hancock, R.D.Schauer, F.R.Lucht, R.P.Katta, V.R.Hsu, K.Y.Thermal diffusion effects and vortex-flame interactions in hydrogen jet diffusion flamesTwenty-Sixth Symposium (International) on Combustion 1996 26 1087CrossRefGoogle Scholar
Patnaik, G.Kailasanath, K.A computational study of local quenching in flame-vortex interactions with radiative lossesTwenty-Seventh Symposium (International) on Combustion 1998 27 711CrossRefGoogle Scholar
Roberts, W.L.Driscoll, J.F.Drake, M.C.Goss, L.P.Images of the quenching of a flame by a vortex to quantify regimes of turbulent combustionCombustion and Flame 1993 94 158CrossRefGoogle Scholar
Roberts, W. L.Driscoll, J.F.A laminar vortex interacting with a premixed flame: Measured formation of pockets of reactantsCombustion and Flame 1991 87 245CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Internal Flame Processes
  • Tim C. Lieuwen, Georgia Institute of Technology
  • Book: Unsteady Combustor Physics
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059961.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Internal Flame Processes
  • Tim C. Lieuwen, Georgia Institute of Technology
  • Book: Unsteady Combustor Physics
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059961.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Internal Flame Processes
  • Tim C. Lieuwen, Georgia Institute of Technology
  • Book: Unsteady Combustor Physics
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059961.011
Available formats
×