Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T08:13:36.973Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 March 2016

Giovanni Molica Bisci
Affiliation:
Università di Reggio Calabria, Italy
Vicentiu D. Radulescu
Affiliation:
Institute of Mathematics of the Romanian Academy
Raffaella Servadei
Affiliation:
Università degli Studi di Urbino, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] N., Abatangelo and E., Valdinoci. A notion of nonlocal curvature. Numer. Funct. Anal. Optim. 35: 793–815, 2014.Google Scholar
[2] B., Abdellaoui, E., Colorado, and I., Peral. Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli–Kohn–Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems. Adv. Diff. Equations 11: 667–720, 2006.Google Scholar
[3] R. A., Adams. Sobolev Spaces. Academic Press, New York, 1975.
[4] S., Agmon. Lectures on elliptic boundary value problems. Mathematical Studies, Vol. 2. Van Nostrand, Princeton, NJ, 1965.
[5] S., Alama. Semilinear elliptic equations with sublinear indefinite nonlinearities. Adv. Diff. Equations 4: 813–42, 1999.Google Scholar
[6] F. J., Almgren and E. H., Lieb. Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2: 683–773, 1989.Google Scholar
[7] H., Amann and E., Zehnder. Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa 7: 539–603, 1980.Google Scholar
[8] A., Ambrosetti, H., Brézis, and G., Cerami. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122: 519–543, 1994.Google Scholar
[9] A., Ambrosetti and A., Malchiodi. Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies Advanced Mathematics 104. Cambridge University Press, 2007.
[10] A., Ambrosetti and G., Prodi, A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics 34. Cambridge University Press, 1993.
[11] A., Ambrosetti and P. H., Rabinowitz. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14: 349–81, 1973.Google Scholar
[12] A., Ambrosetti and M., Struwe. A note on the problem -Δu =λu+u|u|2*-2. Manusc. Math. 54: 373–79, 1986.Google Scholar
[13] D., Applebaum. Lévy Processes and Stochastic Calculus, 2nd ed. Cambridge Studies in Advanced Mathematics 116. Cambridge University Press, 2009.
[14] G., Arioli, F., Gazzola, H.-Ch., Grunau, and E., Sassone. The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four. NoDEA Nonlinear Differential Equations Appl. 15: 69–90, 2008.Google Scholar
[15] N., Aronszajn. Boundary values of functions with finite Dirichlet integral. Technical Report 14, University of Kansas, 1955, pp. 77–94.
[16] G., Autuori, A., Fiscella, and P., Pucci. Stationary Kirchhoff problems involving a fractional operator and a critical nonlinearity. Nonlinear Anal. (in press).
[17] G., Autuori and P., Pucci. Elliptic problems involving the fractional Laplacian in RN. J. Differential Equations 255: 2340–62, 2013.Google Scholar
[18] M., Badiale and E., Serra. Semilinear Elliptic Equations for Beginners. Springer, Berlin, 2011.
[19] A., Bahri and H., Berestycki. A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267: 1–32, 1981.Google Scholar
[20] A., Bahri and P. L., Lions. Morse index of some min-max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41: 1027–37, 1988.Google Scholar
[21] G., Barles, E., Chasseigne, and C., Imbert. On the Dirichlet problem for second-order elliptic integrodifferential equations. Indiana Univ. Math. J. 57: 213–46, 2008.Google Scholar
[22] B., Barrios, E., Colorado, A. De, Pablo, and U., Sánchez. On some critical problems for the fractional Laplacian operator. J. Differential Equations 252: 6133–62, 2012.Google Scholar
[23] B., Barrios, E., Colorado, R., Servadei, and F., Soria. A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 31: 875–900, 2015.Google Scholar
[24] B. Barrios, Barrera, A., Figalli, and E., Valdinoci. Bootstrap regularity for integrodifferential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, doi: 10.2422/2036-2145.201202_007.
[25] B., Barrios, M., Medina, and I., Peral. Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Commun. Contemp. Math. 16(4): 1350046, 2014.Google Scholar
[26] P., Bartolo, V., Benci, and D., Fortunato. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. 7: 981–1012, 1983.Google Scholar
[27] R., Bartolo, A. M., Candela, and A., Salvatore. Perturbed asymptotically linear problems. Ann. Mat. Pura Appl. 193: 89–101, 2014.Google Scholar
[28] R., Bartolo and G. Molica, Bisci. A pseudo-index approach to fractional equations. Expo. Math. 33: 502–516, 2015.Google Scholar
[29] T., Bartsch, Z., Liu, and T., Weth. Sign changing solutions of superlinear Schrödinger equations. Comm. Partial Differential Equations 29: 25–42, 2005.Google Scholar
[30] T., Bartsch, A., Pankov, and Z.-Q., Wang. Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 4: 981–1012, 2001.Google Scholar
[31] T., Bartsch and Z.-Q., Wang. Existence and multiplicity results for some superlinear elliptic problems in RN . Commun. Partial Differential Equations 20: 1725–41, 1995.Google Scholar
[32] W., Beckner. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere on SN . Proc. Natl. Acad. Sci. USA 89: 4816–19, 1992.Google Scholar
[33] V., Benci. On the critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274: 533–72, 1982.Google Scholar
[34] S., Bernstein. Sur une classe d’équations fonctionnelles aux dérivées partielles. In Russian with French summary. Bull. Acad. Sci. URSS, Set. Math. 4: 17–26, 1940.Google Scholar
[35] J., Bertoin. Lévy Processes (Cambridge Tracts in Mathematics 121). Cambridge University Press, 1996.Google Scholar
[36] Z., Binlin, G. Molica, Bisci, and R., Servadei. Superlinear nonlocal fractional problems with infinitely many solutions. Nonlinearity 28: 2247–64, 2015.Google Scholar
[37] C., Bjorland, L., Caffarelli, and A., Figalli. Non-local gradient dependent operators. Adv. Math. 230: 1859–94, 2012.Google Scholar
[38] R. M., Blumenthal, R. K., Getoor, and D. B., Ray. On the distribution of first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99: 540–54, 1961.Google Scholar
[39] L., Boccardo, M., Escobedo, and I., Peral. A Dirichlet problem involving critical exponents. Nonlinear Anal. 24: 1639–48, 1995.Google Scholar
[40] L., Boccardo and T., Gallouet. Problèmes unilatéraux avec données dans L1 (Unilateral problems with L1 data). C. R. Acad. Sci., Paris, Sér. I, 311: 617–19, 1990.Google Scholar
[41] M., Bonforte, Y., Sire, and J. L., Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Preprint available at http://arxiv. org/pdf/1404.6195v3.pdf.
[42] C., Brändle, E., Colorado, A. De, Pablo, and U., Sánchez. A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A, 143: 39–71, 2013.Google Scholar
[43] H., Brézis. Analyse fonctionelle: Théorie et applications. Masson, Paris, 1983.
[44] H., Brézis, J. M., Coron, and L., Nirenberg. Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Comm. Pure Appl. Math. 33: 667–84, 1980.Google Scholar
[45] H., Brézis and E., Lieb. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88: 486–90, 1983.Google Scholar
[46] H., Brézis and L., Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36: 437–77, 1983.Google Scholar
[47] C., Bucur and E., Valdinoci. Nonlocal diffusion and applications. Preprint available at http://arxiv.org/pdf/1504.08292v2.pdf.
[48] X., Cabré and Y., Sire. Nonlinear equations for fractional Laplacians: I. Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31: 23–53, 2014.Google Scholar
[49] X., Cabré and Y., Sire. Nonlinear equations for fractional Laplacians: II. Existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367: 911–41, 2015.Google Scholar
[50] X., Cabré and J., Solà-Morales. Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 58: 1678–1732, 2005.Google Scholar
[51] X., Cabré and J., Tan. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224: 2052–93, 2010.Google Scholar
[52] L., Caffarelli. Nonlocal equations, drifts and games. In Nonlinear Partial Differential Equations, Abel Symposia 7: 37–52, 2012.Google Scholar
[53] L., Caffarelli, J. M., Roquejoffre, and Y., Sire. Variational problems with free boundaries for the fractional laplacian. J. Eur. Math. Soc. 12: 1151–79, 2010.Google Scholar
[54] L., Caffarelli, S., Salsa, and L., Silvestre. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171: 425–61, 2008.Google Scholar
[55] L., Caffarelli and L., Silvestre. An extension problem related to the fractional Laplacian. Commun. Partial Differential Equations 32: 1245–60, 2007.Google Scholar
[56] L., Caffarelli and L., Silvestre. Regularity theory for fully nonlinear integrodifferential equations. Commun. Pure Appl. Math. 62: 597–638, 2009.Google Scholar
[57] L., Caffarelli and L., Silvestre. Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200: 59–88, 2011.Google Scholar
[58] A., Capella. Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains. Commun. Pure Appl. Anal. 10: 1645–62, 2011.Google Scholar
[59] A., Capella, J., Dávila, L., Dupaigne, and Y., Sire. Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differential Equations 36: 1353–84, 2011.Google Scholar
[60] A., Capozzi, D., Fortunato, and G., Palmieri. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 2: 463–70, 1985.Google Scholar
[61] A., Castro. Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matemáticas 1980.Google Scholar
[62] G., Cerami, D., Fortunato, and M., Struwe. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire 1: 341–50, 1984.Google Scholar
[63] G., Cerami, S., Solimini, and M., Struwe. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69: 289–306, 1986.Google Scholar
[64] S., Challal, A., Lyaghfouri, and J. F., Rodrigues. On the A-obstacle problem and the Hausdorff measure of its free boundary. Ann. Mat. Pura Appl. 191: 113–65, 2012.Google Scholar
[65] M., Chang. Ground sate solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54, 061504, 2013.Google Scholar
[66] F., Charro, E., Colorado, and I., Peral. Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side. J. Differential Equations 246: 4221–48, 2009.Google Scholar
[67] Z., Chen, N., Shioji, and W., Zou. Ground state and multiple solutions for a critical exponent problem. NoDEA Nonlinear Differential Equations Appl. 19: 253–77, 2012.Google Scholar
[68] M., Cheng. Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507, 2012.Google Scholar
[69] Ph. G., Ciarlet. Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, 2013.
[70] M., Clapp and T., WethMultiple solutions for the Brezis–Nirenberg problem. Adv. Differential Equations 10: 463–80, 2005.Google Scholar
[71] D. C., Clark. A variant of the Lusternik–Schnirelman theory. Indiana Univ. Math. J. 22: 65–74, 1972.Google Scholar
[72] F., Colasuonno and P., Pucci. Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74: 5962–74, 2011.Google Scholar
[73] E., Colorado, A. De, Pablo, and U., Sánchez. Perturbations of a critical fractional equation. Pacific J. Math. 271: 65–85, 2014.Google Scholar
[74] M., Comte. Solutions of elliptic equations with critical Sobolev exponent in dimension three. Nonlinear Anal. 17: 445–55, 1991.Google Scholar
[75] R., Cont and P., Tankov. Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series. Boca Raton, FL, 2004.
[76] F. J. S. A., Corrêa and D. G., Costa. On a bi-nonlocal p(x)-Kirchhoff equation via Krasnoselskii's genus. Math. Meth. Appl. Sci. 38: 87–93, 2014.Google Scholar
[77] F. J. S. A., Corrêa and G. M., Figueiredo. On a p-Kirchhoff equation via Krasnoselskii's genus. Appl. Math. Lett. 22: 819–22, 2009.Google Scholar
[78] C., Cortazar, M., Elgueta, J., Rossi, and N., Wolanski. Asymptotic behavior for nonlocal diffusion equations. J. Math. Pure Appl. 86: 271–91, 2006.Google Scholar
[79] C., Cortazar, M., Elgueta, J., Rossi, and N., Wolanski. Boundary fluxes for nonlocal diffusion. J. Differential Equations 234: 360–90, 2007.Google Scholar
[80] C., Cortazar, M., Elgueta, J., Rossi, and N., Wolanski. How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. Arch. Rat. Mech. Anal. 187: 137–56, 2008.Google Scholar
[81] V. Coti, Zelati and M., Nolasco. Existence of ground states for nonlinear, pseudorelativistic Schrödinger equations. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. Lincei, Mat. Appl. 22: 51–72, 2011.Google Scholar
[82] A., Cotsiolis and N., Tavoularis. Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295: 225–36, 2004.Google Scholar
[83] E. Di, Nezza, G., Palatucci, and E., Valdinoci. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136: 521–73, 2012.Google Scholar
[84] S., Dipierro, G., Palatucci, and E., Valdinoci. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Le Matematiche 68: 201–16, 2013.Google Scholar
[85] S., Dipierro, X., Ros-Oton, and E., Valdinoci. Nonlocal problems with Neumann boundary conditions. WIAS Preprint No. 1986, (2014). Preprint available at http://arxiv.org/pdf/1407. 3313v3.pdf.
[86] S., Dipierro, O., Savin, and E., Valdinoci. All functions are locally s-harmonic up to a small error. Preprint available at http://arxiv.org/pdf/1404.3652v1.pdf.
[87] G., Devillanova and S., Solimini. Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Differential Equations 7: 1257–80, 2002.Google Scholar
[88] G., Devillanova and S., Solimini. A multiplicity result for elliptic equations at critical growth in low dimension. Commun. Contemp. Math. 5: 171–7, 2003.Google Scholar
[89] H., Dong and D., Kim. On L p-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262: 1166–99, 2012.Google Scholar
[90] O., Druet. Elliptic equations with critical Sobolev exponents in dimension 3. Ann. Inst. H. Poincaré Anal. Non Linéaire 19: 125–42, 2002.Google Scholar
[91] L. C., Evans. Partial differential equations. In Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence, RI, 1998.
[92] E. B., Fabes, C. E., Kenig, and R. P., Serapioni. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7: 77–116, 1982.Google Scholar
[93] M. M., Fall. Semilinear elliptic equations for the fractional Laplacian with Hardy potential. Preprint available at http://arxiv.org/pdf/1109.5530v4.pdf.
[94] M. M., Fall and V., Felli. Unique continuation property and local asympotics of solutions to fractional elliptic equations. Comm. Partial Differential Equations 39: 354–97, 2014.Google Scholar
[95] P., Felmer, A., Quaas, and J., Tan. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142: 1237–62, 2012.Google Scholar
[96] M., Ferrara and G. Molica, Bisci. Some applications of a Pucci–Serrin result. In Minimax Theory and Its Applications (in press) Helderman, Germany.
[97] M., Ferrara, G. Molica, Bisci, and B., Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete and Continuous Dynamical Systems Series B, 19: 2493–99, 2014.Google Scholar
[98] G. M., Figueiredo, G. Molica, Bisci, and R., Servadei. On a fractional Kirchhoff-type equation via Krasnoselskii's genus. Asymptot. Anal. 94: 347–361, 2015.Google Scholar
[99] A., Fiscella. Saddle point solutions for non-local elliptic operators. Topol. Methods Nonlinear Anal. 44: 527–38, 2014.Google Scholar
[100] A., Fiscella, G. Molica, Bisci, and R., Servadei. Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems. Bull. Sci. Math. 140: 13–35, 2016.Google Scholar
[101] A., Fiscella and P., Pucci. On certain nonlocal Hardy-Sobolev critical elliptic Dirichlet problems. Preprint.
[102] A., Fiscella, R., Servadei, and E., Valdinoci. A resonance problem for non-local elliptic operators. Z. Anal. Anwendungen 32: 411–31, 2013.Google Scholar
[103] A., Fiscella, R., Servadei, and E., Valdinoci. Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40: 235–53, 2015.Google Scholar
[104] A., Fiscella, R., Servadei, and E., Valdinoci. Asymptotically linear problems driven by fractional Laplacian operators. Math. Methods Appl. Sci. 38: 3551–3563, 2015.Google Scholar
[105] A., Fiscella and E., Valdinoci. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94: 156–70, 2014.Google Scholar
[106] G. B., Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, NewYork, 1984.
[107] G., Franzina and G., Palatucci. Fractional p-eigenvalues. Riv. Math. Univ. Parma 5: 373–86, 2014.Google Scholar
[108] R. L., Frank and E., Lenzmann. Uniqueness and nondegeneracy of ground states for (−Δ)sQ + Q - Qa+1 = 0 in R. Ann. Math. (in press).
[109] M. F., Furtado, L. A., Maia, and E. A. B., Silva. On a double resonant problem in RN . Differential Integral Equations 15: 1335–44, 2002.Google Scholar
[110] E., Gagliardo. Proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 7: 102–37, 1958.Google Scholar
[111] J., García-Azorero and I., Peral. Multiplicity of solutions for elliptic problems with critical exponent or with non-symetric term. Trans. Am. Math. Soc. 323: 877–95, 1991.Google Scholar
[112] F., Gazzola and H.-Ch., Grunau. On the role of space dimension n =2+2 v2 in the semilinear Brezis–Nirenberg eigenvalue problem. Analysis (Munich) 20: 395–9, 2000.Google Scholar
[113] F., Gazzola and V., Rădulescu. A nonsmooth critical point theory approach to some nonlinear elliptic equations in RN . Differential Integral Equations 13: 47–60, 2002.Google Scholar
[114] F., Gazzola and B., Ruf. Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv. Differential Equations 2: 555–72, 1997.Google Scholar
[115] R. K., Getoor. First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101: 75–90, 1961.Google Scholar
[116] N., Ghoussoub, D., Preiss, A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire 6: 321–30, 1989.Google Scholar
[117] D., Gilbarg and N. S., Trudinger. Elliptic Partial Differential Equations of Second Order, 2nd Ed. Springer-Verlag, Berlin, 1983.
[118] P., Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.
[119] L., Hörmander. The Analysis of Linear Partial Differential Operators, Vols. I and II. Springer- Verlag, Berlin, 1983.
[120] O., Kavian. Introduction à la théorie des points critiques et applications aux problèmes elliptiques. In Mathématiques & Applications. Springer-Verlag, Paris, 1993.
[121] B., Kawohl. Rearrangements and Convexity of Level Sets in PDE. Springer-Verlag, Berlin, 1985.
[122] G. R., Kirchhoff. Vorlesungen über Mathematische Physik: Mechanik. Teubner, Leipzig, 1883.
[123] M. A., Krasnoselskii. Topological Methods in the Theory of Nonlinear Integral Equations. Macmillan, New York, 1964.
[124] A., Kristály. A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity. Electron. J. Differential Equations 42: 1–11, 2007.Google Scholar
[125] A., Kristály, V., Rădulescu, and Cs., Varga. Variational principles in mathematical physics, geometry, and economics: Qualitative analysis of nonlinear equations and unilateral problems. In Encyclopedia of Mathematics and Its Applications, Vol. 136. Cambridge University Press, 2010.
[126] A., Kristály and Cs., Varga. Multiple solutions for elliptic problems with singular and sublinear potentials. Proc. Am. Math. Soc. 135: 2121–6, 2007.Google Scholar
[127] T., Kuusi, G., Mingione, and Y., Sire. Nonlocal equations with measure data. Commun. Math. Phys. 337: 1317–68, 2015.Google Scholar
[128] T., Kuusi, G., Mingione, and Y., Sire. Nonlocal self-improving properties. Anal. PDE 8: 57–114, 2015.Google Scholar
[129] N. S., Landkof. Foundations of Modern Potential Theory, trans. from Russian (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 180). Springer-Verlag, Berlin, 1973.
[130] N., Laskin. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268: 298– 305, 2000.Google Scholar
[131] N., Laskin. Fractional Schrödinger equation. Phys. Rev. E 66, 056108, 2002.Google Scholar
[132] E. H., Lieb and M., Loss. Analysis. American Mathematical Society, Providence, 1997.
[133] E., Lindgren and P., Lindqvist. Fractional eigenvalues. Calc. Var. 49: 795–826, 2014.Google Scholar
[134] J. L., Lions. On some questions in boundary value problems of mathematical physics. In Proceedings of International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, 1977. Math. Stud. 30: 284–346, 1978.Google Scholar
[135] P.-L., Lions. The concentration-compactness principle in the calculus of variations: The limit case I. Rev. Mat. Iberoam. 1: 145–201, 1985.Google Scholar
[136] P.-L., Lions. The concentration-compactness principle in the calculus of variations: The limit case II. Rev. Mat. Iberoam. 1: 45–121, 1985.Google Scholar
[137] J. L., Lions and E., Magenes. Problemi ai limiti non omogenei (III). Ann. Scuola Norm. Sup. Pisa 15: 41–103, 1961.Google Scholar
[138] J. L., Lions and E., Magenes. Problémes aux limites non homogénes et applications. In Travaux et Recherches Mathématiques. Dunod, Paris, 1968.
[139] R. de la, Llave and E., Valdinoci. A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26: 1309–44, 2009.Google Scholar
[140] A., Majda and E., Tabak. A two-dimensional model for quasigeostrophic flow: comparision with the two-dimensional Euler flow. Nonlinear phenomena in ocean dynamics. Phys. D 98(2–4): 515–22, 1996.Google Scholar
[141] W., McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000.
[142] N., Meyers and J., Serrin. H = W. Proc. Nat. Acad. Sci. USA 51: 1055–6, 1964.
[143] L., Modica. A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38: 679–84, 1985.Google Scholar
[144] G. Molica, Bisci. Fractional equations with bounded primitive. Appl. Math. Lett. 27: 53–8, 2014.Google Scholar
[145] G. Molica, Bisci. Sequence of weak solutions for fractional equations. Math. Res. Lett. 21: 241–53, 2014.Google Scholar
[146] G. Molica, Bisci and B. A., Pansera. Three weak solutions for nonlocal fractional equations. Adv. Nonlinear Stud. 14: 619–29, 2014.Google Scholar
[147] G. Molica, Bisci and V., Rădulescu. Multiplicity results for elliptic fractional equations with subcritical term. NoDEA Nonlinear Differential Equations Appl. 22: 721–739, 2015.Google Scholar
[148] G. Molica, Bisci and V., Rădulescu. A sharp eigenvalue theorem for fractional elliptic equations. Preprint 2015.
[149] G. Molica, Bisci and V., Rădulescu. Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differential Equations 54: 2985–3008, 2015Google Scholar
[150] G. Molica, Bisci and D., Repovš. Existence and localization of solutions for nonlocal fractional equations. Asymptot. Anal. 90: 367–78, 2014.Google Scholar
[151] G. Molica, Bisci and D., Repovš. Fractional nonlocal problems involving nonlinearities with bounded primitive. J. Math. Anal. Appl. 420: 167–76, 2014.Google Scholar
[152] G. Molica, Bisci and D., Repovš. On doubly nonlocal fractional elliptic equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26: 161–76, 2015.Google Scholar
[153] G. Molica, Bisci, D., Repovš, and R., Servadei. Nontrivial solutions of superlinear nonlocal problems. Forum Math., to appear.
[154] G. Molica, Bisci, D., Repovš, and L., Vilasi. Integrodifferential fractional problems with infinitely many solutions. Preprint 2015.
[155] G. Molica, Bisci and R., Servadei. A bifurcation result for nonlocal fractional equations. Anal. Appl. 13: 371–94, 2015.Google Scholar
[156] G. Molica, Bisci and R., Servadei. Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent. Adv. Differential Equations 20: 635–60, 2015.Google Scholar
[157] G. Molica, Bisci and R., Servadei. A Brezis–Nirenberg splitting approach for nonlocal fractional equations. Nonlinear Anal. 119: 341–53, 2015.Google Scholar
[158] G. Molica, Bisci and F., Tulone. An existence result for fractional Kirchhoff-type equations. Z. Anal. Anwendungen (in press).
[159] G. Molica, Bisci and L., Vilasi. On a fractional degenerate Kirchhoff-type problem. Commun. Contemp. Math. DOI: 10.1142/S0219199715500881.
[160] E., Montefusco, B., Pellacci, and G., Verzini. Fractional diffusion with Neumann boundary conditions: the logistic equation. Disc. Cont. Dyn. Syst. Ser. B 18: 2175–202, 2013.Google Scholar
[161] R., Musina and A. I., Nazarov. On fractional Laplacians. Commun. Partial Differential Equations 39: 1780–90, 2014.Google Scholar
[162] G., Palatucci and A., Pisante. Improved Sobolev embeddings, profile decomposition and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differential Equations 50: 799–829, 2014.Google Scholar
[163] Y. J., Park. Fractional Polya-Szegö inequality. J. Chungcheong Math. Soc. 24: 267–71, 2011.Google Scholar
[164] K., Perera, M., Squassina, and Y., Yang. Bifurcation and multiplicity results for critical fractional p-Laplacian problems. Math. Nachr. (in press).
[165] P., Piersanti and P., Pucci. Existence theorems for fractional p-Laplacian problems. Anal. Appl. (Singap.), in press. Preprint 2015.
[166] S., Pohozaev. On a class of quasilinear hyperbolic equations. Math. Sborniek 96:152–66, 1975.Google Scholar
[167] P., Pucci and S., Saldi. Critical stationary Kirchhoff equations in Rn involving nonlocal operators. Rev. Mat. Iberoam. (in press).
[168] P., Pucci and S., Saldi. Multiple solutions for an eigenvalue problem involving non-local elliptic p-Laplacian operators. In Geometric Methods in PDEs (Springer INdAM Series), Vol. 13, ed. by G., Citti, M., Manfredini, D., Morbidelli, S., Polidoro, and F., Uguzzoni. Springer-Verlag, Berlin, 2015, pp. 159–76.
[169] P., Pucci and J., Serrin. A mountain pass theorem. J. Differential Equations 60:142–9, 1985.Google Scholar
[170] P., Pucci, M., Xiang, and B., Zhang. Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal., in press. Preprint 2015.
[171] P., Pucci, M., Xiang, and B., Zhang. Multiple solutions for nonhomogeneous Schrödinger- Kirchhoff type equations involving the fractional p-Laplacian in RN . Calc. Var. Partial Differential Equations (in press).
[172] P. H., Rabinowitz. Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4: 215–23, 1978.Google Scholar
[173] P. H., Rabinowitz. Some minimax theorems and applications to nonlinear partial differential equations. In Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, ed. by L., Cesari et al. New York: Academic Press, 1978, pp. 161–77.
[174] P. H., Rabinowitz. Minimax methods in critical point theory with applications to differential equations (CBMS Reg. Conf. Ser. Math. 65). American Mathematical Society, Providence, RI, 1986.
[175] P. H., Rabinowitz. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43: 270–91, 1992.Google Scholar
[176] B., Ricceri. A general variational principle and some of its applications. Fixed point theory with applications in nonlinear analysis. J. Comput. Appl. Math. 113: 401–10, 2000.Google Scholar
[177] B., Ricceri. On a three critical points theorem. Archiv der Mathematik 75: 220–6, 2000.Google Scholar
[178] B., Ricceri. A three critical points theorem revisited. Nonlinear Anal. 70: 3084–9, 2009.Google Scholar
[179] B., Ricceri. A further three critical points theorem. Nonlinear Anal. 71: 4151–7, 2009.Google Scholar
[180] B., Ricceri. Nonlinear eigenvalue problems. In D. Y., Gao and D., Motreanu (eds.), Handbook of Nonconvex Analysis and Applications. International Press, 2010, pp. 543–95.
[181] B., Ricceri. A multiplicity result for nonlocal problems involving nonlinearities with bounded primitive. Stud. Univ. Babęs-Bolyai, Math. 55: 107–14, 2010.Google Scholar
[182] B., Ricceri. A further refinement of a three critical points theorem. Nonlinear Anal. 74: 7446– 54, 2011.Google Scholar
[183] B., Ricceri. A new existence and localization theorem for Dirichlet problem. Dynam. Systems Appl. 22: 317–24, 2013.Google Scholar
[184] X., Ros-Oton and J., Serra. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pure Appl. 101: 275–302, 2014.Google Scholar
[185] X., Ros-Oton and J., Serra. The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213: 587–628, 2014.Google Scholar
[186] X., Ros-Oton and J., Serra. Fractional Laplacian: Pohozaev identity and nonexistence results. Preprint available at http://arxiv.org/pdf/1205.0494.pdf.
[187] S., Salsa. Partial Differential Equations in Action: From Modelling to Theory. Springer- Verlag Italia, Milano, 2008.
[188] S., Salsa. Optimal regularity in lower dimensional obstacle problems. In Subelliptic PDEs and Applications to Geometry and Finance (Lect. Notes Semin. Interdiscip. Mat. 6, Semin. Interdiscip. Mat. (S.I.M.)). Potenza, 2007, pp. 217–26.
[189] S., Salsa. The problems of the obstacle in lower dimension and for the fractional Laplacian. In Regularity Estimates for Nonlinear Elliptic and Parabolic Problems (Lecture Notes in Math. 2045). Springer, Heidelberg, 2012, pp. 153–244.
[190] M., Schechter. A variation of the mountain pass lemma and applications. J. Lond. Math. Soc. 44: 491–502, 1991.Google Scholar
[191] M., Schechter and W., Zou. On the Brezis–Nirenberg problem. Arch. Ration. Mech. Anal. 197: 337–56, 2010.Google Scholar
[192] S., Secchi. Ground state solutions for nonlinear fractional Schröinger equations in RN . J. Math. Phys. 54, 031501, 2013.Google Scholar
[193] S., Secchi. Perturbation results for some nonlinear equations involving fractional operators. Differ. Equ. Appl. 5: 221–36, 2013.Google Scholar
[194] S., Secchi. On fractional Schrödinger equations in RN without the Ambrosetti–Rabinowitz condition. Topol. Methods Nonlinear Anal. (in press).
[195] R., Servadei. Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity. Contemp. Math. 595: 317–40, 2013.Google Scholar
[196] R., Servadei. The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2: 235–70, 2013.Google Scholar
[197] R., Servadei. A critical fractional Laplace equation in the resonant case. Topol. Methods Nonlinear Anal. 43: 251–67, 2014.Google Scholar
[198] R., Servadei and E., Valdinoci. Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389: 887–98, 2012.Google Scholar
[199] R., Servadei and E., Valdinoci. Lewy–Stampacchia type estimates for variational inequalities driven by (non)local operators. Rev. Mat. Iberoam. 29: 1091–126, 2013.Google Scholar
[200] R., Servadei and E., Valdinoci. Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33: 2105–37, 2013.Google Scholar
[201] R., Servadei and E., Valdinoci. A Brezis–Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12(6): 2445–64, 2013.Google Scholar
[202] R., Servadei and E., Valdinoci. Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58: 133–54, 2014.Google Scholar
[203] R., Servadei and E., Valdinoci. On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A. 144A: 1–25, 2014.Google Scholar
[204] R., Servadei and E., Valdinoci. The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367: 67–102, 2015.Google Scholar
[205] R., Servadei and E., Valdinoci. Fractional Laplacian equations with critical Sobolev exponent. Rev. Mat. Comput. 28: 655–676, 2015.Google Scholar
[206] L., Silvestre. Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60: 67–112, 2007.Google Scholar
[207] L. N., Slobodeckij. Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations. Leningrad. Gos. Ped. Inst. Učep. Zap. 197: 54–112, 1958.Google Scholar
[208] P. R., Stinga and J. L., Torrea. Extension problem and Harnack's inequality for some fractional operators. Commun. Partial Differ. Equations 35: 2092–122, 2010.Google Scholar
[209] P., Stinga and B., Volzone. Fractional semilinear Neumann problems arising from a fractional Keller-Segel model. Calc. Var. Partial Differential Equations 54: 1009–42, 2015.Google Scholar
[210] W. A., Strauss. Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55: 149–62, 1977.Google Scholar
[211] M., Struwe. Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems. Manuscripta Math. 32: 335–64, 1980.Google Scholar
[212] M., Struwe. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (Ergebnisse der Mathematik und ihrer Grenzgebiete 3). Springer- Verlag, Berlin, 1990.
[213] A., Szulkin, T., Weth, and M., Willem. Ground state solutions for a semilinear problem with critical exponent. Differential Integral Equations 22: 913–26, 2009.Google Scholar
[214] J., Tan. The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differential Equations 36: 21–41, 2011.Google Scholar
[215] K., Teng. Multiple solutions for a class of fractional Schrödinger equations in RN. Nonlinear Anal. Real World Appl. 21: 76–86, 2015.Google Scholar
[216] E., Valdinoci. From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. S'eMA 49: 33–44, 2009.Google Scholar
[217] J. L., Vázquez. Nonlinear diffusion with fractional laplacian operators. In Nonlinear Partial Differential Equations, Abel Symp. 7: 271–98, 2012.Google Scholar
[218] J. L., Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4): 857–85, 2014.Google Scholar
[219] L., Vlahos, H., Isliker, Y., Kominis, and K., Hizonidis. Normal and anomalous diffusion: a tutorial In Order and Chaos, Vol. 10, ed. by T., Bountis. Patras University Press, 2008.
[220] M., Willem. Minimax Theorems (Progress in Nonlinear Differential Equations and Their Applications 24). Birkhäuser, Boston, 1996.
[221] D., Zhang. On multiple solutions of Δu + λu +|u|4/(n−2)u = 0. Nonlinear Anal. 13: 353–72, 1989.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×