Published online by Cambridge University Press: 05 May 2010
Introduction
We first consider a number of discrete-link models in which system properties are concentrated at specific locations. The motivation for considering simple mechanical models is that most of the concepts of dynamics and stability issues encountered with continuous systems (e.g., beams, plates) can be observed with discrete systems but are somewhat easier to analyze. In fact the governing equations will tend to be algebraic rather than differential (at least in space), and it is natural to start with a look at systems in which the behavior of the system is completely described by just a single degree of freedom.
An Inverted Pendulum
Consider the simple hinged cantilever illustrated in Fig. 5.1. This system consists of a concentrated mass supported by a massless but rigid bar of length L. A torsional spring supplies a linear restoring force that is proportional to the angle of rotation of the hinge (in either direction), with spring coefficient K. The angle of rotation θ thus describes the location of the mass at any given instant of time. Typically, the vertical force is simply P = Mg, but here we assume that an axial load of magnitude P acts independently of the fundamental approaches introduced in Chapter 2 for writing the governing equation of motion.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.