Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T00:01:09.020Z Has data issue: false hasContentIssue false

16 - Nonlinear Vibration

Published online by Cambridge University Press:  05 May 2010

Lawrence N. Virgin
Affiliation:
Duke University, North Carolina
Get access

Summary

PART I: FREE VIBRATION

Introduction

This last chapter considers the dynamic response of axially loaded structural systems in which the motion is not necessarily confined to the local vicinity of an underlying equilibrium position and dynamic behavior is not necessarily harmonic. In a number of places throughout this book, a statement has been made to the effect that largeamplitude behavior will be described later. We now finally consider such situations, largely in terms of revisiting examples detailed in earlier examples, but now, not relying on certain restrictions, for example, linear, or small-amplitude, behavior. Both free and forced vibrations will be considered.

By way of a simple introduction, we go back to the softening cable example described in Section 3.5, and specifically consider the context of Fig. 3.12. This is a free vibration started (with initial conditions) some distance from any of the three available stable equilibrium points present at this level of loading. Because there is no damping, the total energy is conserved, and thus phase trajectories can be viewed as contours of constant total energy. Figure 16.1(a) illustrates the energy levels as a contour plot, and thus we can view the phase trajectory of Fig. 3.12 living in the second darkest shade within the contours of Fig. 16.1(a). Parts (b)–(d) give specific examples of time series generated (numerically) by different initial conditions. We see that the time series in part (b), which corresponds to the phase trajectory shown in Fig. 3.12, is far from sinusoidal. The time series shown in part (c) has relatively small amplitude with a natural frequency close to that predicted by linear theory; see Fig. 3.2 (but still slightly nonlinear; note the expanded y-axis).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nonlinear Vibration
  • Lawrence N. Virgin, Duke University, North Carolina
  • Book: Vibration of Axially-Loaded Structures
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619236.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nonlinear Vibration
  • Lawrence N. Virgin, Duke University, North Carolina
  • Book: Vibration of Axially-Loaded Structures
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619236.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nonlinear Vibration
  • Lawrence N. Virgin, Duke University, North Carolina
  • Book: Vibration of Axially-Loaded Structures
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619236.018
Available formats
×