Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-18T14:59:54.554Z Has data issue: false hasContentIssue false

6 - Numerical Models for General Waves Reflected and Refracted at Viscoelastic Boundaries

Published online by Cambridge University Press:  29 October 2009

Roger D. Borcherdt
Affiliation:
United States Geological Survey, California
Get access

Summary

Theoretical results in the previous chapter predict that plane harmonic waves reflected and refracted at plane anelastic boundaries are in general inhomogeneous with the degree of inhomogeneity dependent on the angle of incidence, the degree of inhomogeneity of the incident wave, and properties of the viscoelastic media. As a result physical characteristics of the waves such as phase velocity, energy velocity, phase shifts, attenuation, particle motion, fractional energy loss, direction and amplitude of maximum energy flow, and energy flow due to wave interaction vary with angle of incidence. Consequently, these physical characteristics of inhomogeneous waves propagating in a stack of anelastic layers will not be unique at each point in the stack as they are for homogeneous waves propagating in elastic media. Instead these physical characteristics of the waves will depend on the angle at which the wave entered the stack and hence the travel path of the wave through previous layers. Towards understanding the significance of these dependences of the physical characteristics on angle of incidence and inhomogeneity of the incident wave, numerical models for general SII and P waves incident on single viscoelastic boundaries are presented in this chapter. Study of this chapter, especially the first three sections, provides additional insight into the effects of a viscoelastic boundary on resultant reflected and refracted waves.

A computer code (WAVES) is used to calculate reflection–refraction coefficients and the physical characteristics of reflected and refracted general waves for the problems of general (homogeneous or inhomogeneous) plane P, SI, and SII waves incident on a plane boundary between viscoelastic media (Borcherdt et al., 1986).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×