Published online by Cambridge University Press: 29 May 2025
ABSTRACT. In this contribution we first summarize how contour integration methods can be used to derive closed formulae for functional determinants of ordinary differential operators. We then generalize our considerations to partial differential operators. Examples are used to show that also in higher dimensions closed answers can be obtained as long as the eigenvalues of the differential operators are determined by transcendental equations. Examples considered comprise of the finite temperature Casimir effect on a ball and the functional determinant of the Laplacian on a two-dimensional torus.
1. Introduction
Functional determinants of second-order differential operators are of great importance in many different fields. In physics, functional determinants provide the one-loop approximation to quantum field theories in the path integral formulation [21; 48]. In mathematics they describe the analytical torsion of a manifold [47].
Although there are various ways to evaluate functional determinants, the zeta function scheme seems to be the most elegant technique to use [9; 16; 17; 31]. This is the method introduced by Ray and Singer to define analytical torsion [47]. In physics its origin goes back to ambiguities in dimensional regularization when applied to quantum field theory in curved spacetime [11; 29].
For many second-order ordinary differential operators surprisingly simple answers can be given. The determinants for these situations have been related to boundary values of solutions of the operators, see, e.g., [8; 10; 12; 22; 23; 26; 36; 39; 40]. Recently, these results have been rederived with a simple and accessible method which uses contour integration techniques [33; 34; 35]. The main advantage of this approach is that it can be easily applied to general kinds of boundary conditions [35] and also to cases where the operator has zero modes [34; 35]; see also [37; 38; 42]. Equally important, for some higher dimensional situations the task of finding functional determinants remains feasible. Once again closed answers can be found but compared to one dimension technicalities are significantly more involved [13; 14]. It is the aim of this article to choose specific higher dimensional examples where technical problems remain somewhat confined. The intention is to illustrate that also for higher dimensional situations closed answers can be obtained which are easily evaluated numerically.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.