Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T19:42:22.949Z Has data issue: false hasContentIssue false

3 - The Biological Underpinnings of Depression

Published online by Cambridge University Press:  05 June 2012

Ania Korszun
Affiliation:
Bart's and The London Queen Mary's School of Medicine and Dentistry, London, United Kingdom
Margaret Altemus
Affiliation:
Weill Medical College, Cornell University, Ithaca, New York
Elizabeth A. Young
Affiliation:
Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan
Corey L. M. Keyes
Affiliation:
Emory University, Atlanta
Sherryl H. Goodman
Affiliation:
Emory University, Atlanta
Get access

Summary

INTRODUCTION

Stress and Depression

Depressive disorders are widely regarded as stress-related conditions. Although genetic vulnerability is critical to the development of depression, in the absence of environmental stressors, the incidence of depressive disorders is very low (Kendler et al., 1995), and in approximately 75% of cases of depression there is a precipitating life event (Brown & Harris, 1978; Frank, Anderson, Reynolds, Ritenour, & Kupfer, 1994). Living organisms survive by maintaining a complex dynamic equilibrium or homeostasis that is constantly challenged by intrinsic or extrinsic stressors. These stressors set in motion responses aimed at preserving homeostasis, including activation of a wide variety of neurotransmitters and neuromodulators. The hypothalamic pituitary adrenal (HPA) axis is the body's main stress hormonal system. Corticotropin releasing hormone (CRH) is the principal central effector of the stress response (Chrousos & Gold, 1992). CRH triggers the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary corticotrope, which, in turn, triggers the release of adrenal glucocorticoids. The stress response is terminated by glucocorticoid feedback at brain and pituitary sites.

Depression has been conceptualized as maladaptive, exaggerated responses to stress. Abnormalities of the HPA axis, as manifested by hypercortisolemia and disruption of the circadian rhythm of cortisol secretion, are well established phenomena in depression (Carroll, Curtis, & Mendels, 1976; Sachar et al., 1973).

Type
Chapter
Information
Women and Depression
A Handbook for the Social, Behavioral, and Biomedical Sciences
, pp. 41 - 61
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahima, R. S., Lawson, A. N. L., Osei, S. Y. S., & Harlan, R. E. (1992). Sexual dimorphism in regulation of type II corticosteroid receptor immunoreactivity in the rat hippocampus. Endocrinology, 131, 1409–1416CrossRefGoogle ScholarPubMed
Altemus, M., Pigott, T., Kalogeras, K. T., Demitrack, M., Dubbert, B., Murphy, D. L.. (1992). Abnormalities in the regulation of vasopressin and corticotropin releasing factor secretion in obsessive-compulsive disorder. Archives of General Psychiatry, 49, 9–20CrossRefGoogle ScholarPubMed
Altemus, M., Redwine, L., Yung-Mei, L., Yoshikawa, T., Yehuda, R., Detera-Wadleigh, S.. (1997). Reduced sensitivity to glucocorticoid feedback and reduced glucocorticoid receptor mRna expression in the luteal phase of the menstrual cycle. Neurosychopharmacology, 17, 100–109Google ScholarPubMed
Altshuler, L. L., Hendrick, V., & Cohen, L. S. (1998). Course of mood and anxiety disorders during pregnancy and the postpartum period. Journal of Clinical Psychiatry, 59 (Suppl 2), 29–33Google ScholarPubMed
Amsterdam, J. C., Winokur, A., Abelman, E., Lucki, I., & Richels, K. (1983). Co-syntropin (ACTH a1–24) stimulation test in depressed patients and healthy subjects. American Journal of Psychiatry, 140, 907–909Google Scholar
Arango, V., Ernsberge, r P., Marzuk, P. M., Chen, J. S., Tierney, H., Stanley, M.. (1990). Autoradiographic demonstration of increased serotonin 5-HT2 and b-adrenergic receptor binding sites in the brain of suicide victims. Archives of General Psychiatry, 47, 1038–1047CrossRefGoogle Scholar
Arango, V., Underwood, M. D., Boldrini, M., Tamir, H., Kassir, S. A., Hsiung, S.. (2001). Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology, 25, 892–903CrossRefGoogle ScholarPubMed
Arato, M., Frecska, E., Tekes, K., & MacCrimmon, D. J. (1991). Serotonergic interhemispheric asymmetry: gender difference in the orbital cortex. Acta Psychiatrica Scandinavica, 84, 110–111CrossRefGoogle ScholarPubMed
Arriza, J. L., Weinberger, C., Cerelli, G., Glaser, T. M., Handelin, B. L., Housman, D. E.. (1987). Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science, 237, 268–275CrossRefGoogle ScholarPubMed
Asberg, M., Traskman, L., & Thoren, P. (1976) 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor?Archives of General Psychiatry, 33, 1193–1197CrossRefGoogle ScholarPubMed
Barden, N., Reul, J. M. H. M., & Holsboer, F. (1995). Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system?Trends in Neuroscience, 18, 6–10CrossRefGoogle ScholarPubMed
Baxter, L. R. Jr., Schwartz, J. M., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Selin, C. E.. (1989). Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives General Psychiatry, 46, 243–250CrossRefGoogle Scholar
Berendsen, H. H. (1995). Interactions between 5-hydroxytryptamine receptor subtypes: is a disturbed receptor balance contributing to the symptomatology of depression in humans?Pharmacology Therapeutics, 66, 17–37CrossRefGoogle ScholarPubMed
Bhagwagar, Z., Hafizi, S., & Cowen, P. J. (2003). Increase in concentration of waking salivary cortisol in recovered patients with depression. American Journal of Psychiatry, 160, 1890–1891CrossRefGoogle ScholarPubMed
Biegon, A., & Greuner, N. (1992). Age-related changes in serotonin 5HT2 receptors on human blood platelets. Psychopharmacology, 108, 210–212CrossRefGoogle ScholarPubMed
Biegon, A., Reches, A., Snyder, L., McEwen, B. S.. (1983). Serotonergic and noradrenergic receptors in the rat brain: modulation by chronic exposure to ovarian hormones. Life Sciences, 32, 2015–21CrossRefGoogle ScholarPubMed
Bierut, L. J., Heath, A. C., Bucholz, K. K., Dinwiddie, S. H., Madden, P. A. F., Statham, D. J.. (1999). Major depressive disorder in a community-based twin sample: Are there different genetic and environmental contributions for men and women?Archives General Psychiatry, 56, 557–563CrossRefGoogle Scholar
Biver, F., Lotstra, F., Monclus, M., Wikler, D., Damhaut, P., Mendlewicz, J.. (1996). Sex difference in 5HT2 receptor in the living human brain. Neuroscience Letters, 204, 25–28CrossRefGoogle ScholarPubMed
Blier, P., & Montigny, C. (1994). Current advances and trends in the treatment of depression. Trends in Pharmacological Sciences, 15, 220–226CrossRefGoogle ScholarPubMed
Bonson, K. R., Johnson, R. G., Fiorella, D., Rabin, R. A., & Winter, J. C. (1994). Serotonergic control of androgen-induced dominance. Pharmacology, Biochemistry & Behavior, 49, 313–322CrossRefGoogle ScholarPubMed
Borisova, N. A., Proshlyakova, E. V., Sapronova, A. Y., & Ugrumov, M. V. (1996). Androgen-dependent sex differences in the hypothalamic serotoninergic system. European Journal of Endocrinology, 134, 232–235CrossRefGoogle ScholarPubMed
Borsini, F. (1994). Balance between cortical 5-HT1A and 5-HT2 receptor function: hypothesis for a faster antidepressant action. Pharmacological Research, 30, 1–11CrossRefGoogle ScholarPubMed
Brady, L., Whitfield, H. J., Fox, R. J., Gold, P. W., & Herkenham, M. (1991). Long-term antidepressant administration alters corticotropin releasing hormone, tyrosine hydroxylase and mineralocorticoid receptor gene expression in rat brain: Therapeutic implications. Journal of Clinical Investigations, 87, 831–837CrossRefGoogle ScholarPubMed
Brown, G. W., & Harris, T. (1978). Social origins of depression: A study of psychiatric disorder in women. New York: The Free PressGoogle Scholar
Buchsbaum, M. S., Wu, J., DeLisi, L. E., Holcomb, H., Kessler, R., Johnson, J.. (1986). Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with FDG in affective illness. Journal Affective Disorders, 10, 137–152CrossRefGoogle ScholarPubMed
Burgess, L. H., & Handa, R. J. (1992). Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology, 131, 1261–1269CrossRefGoogle ScholarPubMed
Butler, P. D., & Nemeroff, C. B. (1990). Corticotropin releasing factor as a possible cause of comorbidity in anxiety and depressive disorders. In Maser, J. D. & Cloninger, C. R. (Eds.), Comorbidity of mood and anxiety disorders. Washington, DC: American Psychiatric PressGoogle Scholar
Carey, M. P., Deterd, C. H., Koning, J., Helmerhorst, , & DeKloet, E. R. (1995). The influence of ovarian steroids on hypothalamic-pituitary-adrenal regulation in the femal rat. Journal of Endocrinology, 144, 311–332CrossRefGoogle Scholar
Carlsson, M., & Carlsson, A. (1988). A regional study in sex differences in rat brain serotonin. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 12, 53–61CrossRefGoogle ScholarPubMed
Carroll, B. J., Curtis, G. C., & Mendels, J. (1976). Neuroendocrine regulation in depression I. Limbic system-adrenocortical dysfunction. Archives of General Psychiatry, 33, 1039–1044CrossRefGoogle ScholarPubMed
Carroll, B. J., Feinberg, M., Greden, J. F., Tarika, J., Albala, A. A., Haskett, R. F.. (1981). A specific laboratory test for the diagnosis of melancholia. Archives of General Psychiatry, 38, 15–22CrossRefGoogle Scholar
Charney, D., Woods, S., Goodman, W., & Heninger, G. (1987). Neurobiological mechanisms of panic anxiety: Biochemical and behavioral correlates of yohimbine-induced panic attacks. American Journal of Psychiatry, 144, 1030–1036Google ScholarPubMed
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267, 1244–1252CrossRefGoogle ScholarPubMed
Dean, C., Williams, R. J., & Brockington, I. F. (1989). Is puerperal psychosis the same as bipolar manic-depressive disorder? A family study. Psychological Medicine, 19, 637–647CrossRefGoogle ScholarPubMed
Drevets, W. C., Frank, E., Price, J. C., Kupfer, D. J., Greer, P. J., & Mathis, C. (2000). Serotonin type-1A receptor imaging in depression. Nuclear Medicine and Biology, 27, 499–507CrossRefGoogle ScholarPubMed
Drevets, W. C., Frank, E., Price, J. C., Kupfer, D. J., Holt, D., Greer, P. J.. (1999). PET imaging of serotonin 1A receptor binding in depression. Biological Psychiatry, 46, 1375–1387CrossRefGoogle ScholarPubMed
Drevets, W. C., Videen, T. O., Price, J. L., Preskorn, S. H., Carmichael, S. T., & Raichle, M. E. (1992). A functional anatomical study of unipolar depression. Journal of Neuroscience, 12, 3628–3641CrossRefGoogle ScholarPubMed
Duncan, M. R., & Duncan, G. R. (1979). An in vivo study of the action of antiglucocorticoids on thymus weight ratio, antibody titre and the adrenal-pituitary-hypothalamus axis. Journal of Steroid Biochemistry, 10, 245–259CrossRefGoogle Scholar
Ehrenkranz, J. R. (1976). Effects of sex steroids on serotonin uptake in blood platelets. Acta Endocrinologica, 83, 420–428Google ScholarPubMed
Eriksson, E., Hedberg, M. A., Andersch, B., & Sundblad, C. (1995). The serotonin reuptake inhibitor paroxetine is superior to the noradrenaline reuptake inhibitor maprotiline in the treatment of premenstrual syndrome. Neuropsychopharmacology, 12, 167–176CrossRefGoogle ScholarPubMed
Fink, G., Sumner, B. E., Rosie, R., Grace, O., & Quinn, J. P. (1996). Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cellular & Molecular Neurobiology, 16, 325–344CrossRefGoogle ScholarPubMed
Fishette, C. T., Biegon, A., & McEwen, B. S. (1984). Sex steroid modulation of the serotonin behavioral syndrome. Life Sciences, 35, 1197–1206CrossRefGoogle Scholar
Frank, E., Anderson, B., Reynolds, C., Ritenour, A., & Kupfer, D. J. (1994). Life events and the research diagnostic criteria endogenous subtype: A confirmation of the distinction using the Bedford College methods. Archives of General Psychiatry, 51, 519–524CrossRefGoogle ScholarPubMed
Galliven, E. A., Singh, A., Michelson, D., Bina, S., Gold, P. W., & Deuster, P. A. (1997). Hormonal and metabolic responses to exercise across time of day and menstrual cycle phase. Journal of Applied Physiology, 6, 1822–1831CrossRefGoogle Scholar
Gelfin, Y., Lerer, B., Lesch, K. P., Gorfine, M., & Allolio, B. (1995). Complex effects of age and gender on hypothermic, adrenocorticotrophic hormone and cortisol responses to ipsapirone challenge in normal subjects. Psychopharmacology, 120, 356–364CrossRefGoogle ScholarPubMed
George, M. S., Ketter, T. A., Parekh, P. I., Horwitz, B., Herscovitch, P., & Post, R. M. (1995). Brain activity during transient sadness and happiness in healthy women. American Journal of Psychiatry, 152, 341–351Google ScholarPubMed
George, M. S., Ketter, T. A., & Post, R. M. (1994). Prefrontal cortex dysfunction in clinical depression. Depression, 2, 59–72CrossRefGoogle Scholar
Gold, P. W., Loriaux, D. L., Roy, A., Kling, M. A., Calabrese, J. R., Kellner, C. H.. (1986). Response to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing's disease. New England Journal of Medicine, 314, 1329–1335CrossRefGoogle Scholar
Gregoire, A., Kumar, R., Everitt, B., Henderson, A. F., & Studd, J. W. (1996). Transdermal oestrogen for treatment of severe postnatal depression. Lancet, 347, 930–933CrossRefGoogle ScholarPubMed
Greist, J. H., Jefferson, J. W., Kobak, K. A., Katzelnick, D. J., & Serlin, R. C. (1995). Efficacy and tolerability of serotonin transport inhibitors in obsessive-compulsive disorder. Archives of General Psychiatry, 52, 53–60CrossRefGoogle ScholarPubMed
Halbreich, U., Asnis, G. M., Schindledecker, R., Zurnoff, B., & Nathan, R. S. (1985). Cortisol secretion in endogenous depression I. Basal plasma levels. Archives of General Psychiatry, 42, 909–914CrossRefGoogle ScholarPubMed
Haleem, D. J., Kennett, G. A., & Curzon, G. (1990). Hippocampal 5-hydroxytryptamine synthesis is greater in female rats than in males and more decreased by the 5-HT1A agonist 8-OH-DPAT. Journal of Neural Transmission, 79, 93–101CrossRefGoogle ScholarPubMed
Heinsbroek, R. P., Haaren, F., Feenstra, M. G., Galen, H., Boer, G., & Pool, N. E. (1990). Sex differences in the effects of inescapable footshock on central catecholaminergic and serotonergic activity. Pharmacology, Biochemistry & Behavior, 37, 539–550CrossRefGoogle ScholarPubMed
Heninger, G. R., & Charney, D. S. (1987). Mechanism of action of antidepressant treatment: Implications for the etiology and treatment of depressive disorders. In Meltzer, H. Y. (Ed.), Psychopharmacology: The third generation of progress (pp. 535–544). New York: Raven PressGoogle Scholar
Holsboer, F., Bardeleden, U., Gerken, A., Stalla, G., & Muller, O. (1984). Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. New England Journal of Medicine, 311, 1127Google ScholarPubMed
Hrdina, P. D., Bakish, D., Chudzik, J., Ravindran, A., & Lapierre, Y. D. (1995). Serotonergic markers in platelets of patients with major depression: upregulation of 5-HT2 receptors. Journal of Psychiatry & Neuroscience, 20, 11–19Google ScholarPubMed
Hrdina, P. D., Demeter, E., Vu, T. B., Sotonyi, P., & Palkovits, M. (1993). 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: Increase in 5-HT2 sites in cortex and amygdala. Brain Research, 614, 37–44CrossRefGoogle ScholarPubMed
Issa, A. M., Rowe, W., & Meaney, M. J. (1990). Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats. Journal of Neuroscience, 10, 3247–3254CrossRefGoogle ScholarPubMed
Jones, I., Kent, L., & Craddock, N. (2002). Genetics of affective disorders. In McGuffin, P., Owen, M. J., & Gottesman, II (Eds.), Psychatric genetics & genomics (pp. 211–245). Oxford: Oxford University PressGoogle Scholar
Jones, M. T., Brush, F. R., & Neame, R. L. B. (1972). Characteristics of fast feedback control of corticotrophin release by corticosteroids. Journal of Endocrinology, 55, 489CrossRefGoogle ScholarPubMed
Keller-Wood, M., Silbiger, J., & Wood, C. E. (1988). Progesterone attenuates the inhibition of adrenocorticotropin responses by cortisol in nonpregnant ewes. Endocrinology, 123, 647–651CrossRefGoogle ScholarPubMed
Kendler, K. S. (1998). Major depression and the environment: A psychiatric genetic perspective. Pharmacopsychiat, 31, 5–9CrossRefGoogle ScholarPubMed
Kendler, K. S., Gardner, C. O., Neale, M. C., & Prescott, C. A. (2001). Genetic risk factors for major depression in men and women: similar or different heritabilities and same or partly distinct genes?Psychological Medicine, 31, 605–616CrossRefGoogle ScholarPubMed
Kendler, K. S., Kessler, R. C., Walters, E. E., MacLean, C., Neale, M. C., Heath, A. C.. (1995). Stressful life events, genetic liability and onset of an episode of major depression in women. American Journal of Psychiatry, 152, 833–842Google ScholarPubMed
Kendler, K. S., Pedersen, N. L., Neale, M. C., & Mathe, A. A. (1995). A pilot Swedish twin study of affective disorders including hospital- and population-ascertained subsamples: Results of model fitting. Behavioral Genetics, 25, 217–232CrossRefGoogle ScholarPubMed
Kessler, R. C., McGonagle, K. A., Swartz, M., Blazer, D. G., & Nelson, C. B. (1993). Sex and depression in the National Comorbidity Survey I: Lifetime prevalence, chronicity and recurrence. Journal of Affective Disorders, 29, 85–96CrossRefGoogle ScholarPubMed
Ketter, T. A., George, M. S., Kimbrell, T. A., & Post, R. M. (1996). Functional brain imaging, limbic function, and affective disorders. Neuroscientist, 2, 55–65CrossRefGoogle Scholar
Kirschbaum, C., Kudielka, B. M., Gaab, J., Schommer, N. C., & Hellhammer, D. H. (1999). Impact of gender, menstrual cycle phase and oral contraceptives on the hypothalamic-pituitary-adrenal axis. Psychosomatic Medicine, 64, 154–162CrossRefGoogle Scholar
Kirschbaum, C., Pirke, K-M., & Hellhammer, D. H. (1995). Preliminary evidence for reduced cortisol responsivity to psychological stress in women using oral contraceptive medication. Psychoneuroendocrinology, 20, 509–514CrossRefGoogle ScholarPubMed
Kirschbaum, C., Schommer, N., Federenko, I., Gaab, J., Neumann, O., Oellers, M.. (1996). Short-term estradiol treatment enhances pituitary-adrenal axis and sympathetic responses to psychosocial stress in healthy young men. Journal of Clinical Endocrinology and Metabolism, 81, 3639–3643Google ScholarPubMed
Klimek, V., Zak-Knapik, J., & Mackowiak, M. (1994). Effects of repeated treatment with fluoxetine and citalopram, 5-HT uptake inhibitors, on 5-HT1A and 5-HT2 receptors in the rat brain. Journal Psychiatry and Neuroscience, 19, 63–67Google ScholarPubMed
Komesaroff, P. A., Esler, M., Clarke, I. J., Fullerton, M. J., & Funder, J. W. (1998). Effects of estrogen and estrous cycle on glucocorticoid and catecholamine responses to stress in sheep. American Journal of Physiology, 275, E671–678Google Scholar
Komesaroff, P. A., Esler, M. D., & Sudhir, K. (1999). Estrogen supplementation attenuates glucocorticoid and catecholamine responses to mental stress in perimenopausal women. Journal of Clinical Endocrinology and Metabolism, 84, 606–610Google ScholarPubMed
Krishnan, K. R. R., Ritchie, J. C., Saunders, W. B., Nemeroff, C. B., & Carroll, B. J. (1990). Adrenocortical sensitivity to low-dose ACTH administration in depressed patients. Biological Psychiatry, 27, 930–933CrossRefGoogle ScholarPubMed
Leckman, J. F., Goodwin, W. K., North, W. G., Cappell, P. B., Price, L. H., Pauls, D. L.. (1994). The role of central oxytocin in obssessive-compulsive disorder and related normal behavior. Psychoneuroendocrinology, 19, 723–749CrossRefGoogle Scholar
Lerer, B., Gillon, D., Lichtenberg, P., Gorfine, M., Gelfin, Y., & Shapira, B. (1996). Interrelationship of age, depression, and central serotonergic function: evidence from fenfluramine challenge studies. International Psychogeriatrics, 8, 83–102CrossRefGoogle ScholarPubMed
Linkowski, P., Mendelwicz, J., LeClercq, R., Brasseur, M., Hubain, P., Goldstein, J., Copinschi, G., Cauter, E. (1985). The 24-hour profile of ACTH and cortisol in major depressive illness. Journal of Clinical Endocrinology and Metabolism, 61, 429–438CrossRefGoogle ScholarPubMed
López, J. F., Vázquez, D. M., Chalmers, D. T., Akil, H., & Watson, S. J. (1997). Regulation of 5-HT receptors and the Hypothalamic-Pituitary-Adrenal axis: Implications for the neurobiology of suicide. Annals of New York Academy of Science, 836, 106–134CrossRefGoogle ScholarPubMed
Lyons, M. J., Eisen, S. A., Goldberg, J., True, W., Lin, N., Meyer, J. M.. (1998). A registry-based twin study of depression in men. Archives of General Psychiatry, 55, 468–472CrossRefGoogle ScholarPubMed
Mann, J. J., Arango, V., & Underwood, M. D. (1990). Serotonin and suicidal behavior. Annals of New York Academy Sciences, 600, 476–484CrossRefGoogle ScholarPubMed
Marcusson, J., Oreland, L., & Winblad, B. (1984). Effect of age on human brain serotonin (S-1) binding sites. Journal of Neurochemistry, 43, 1699–1705CrossRefGoogle ScholarPubMed
Martinez-Conde, E., Leret, M. L., & Diaz, S. (1985). The influence of testosterone in the brain of the male rat on levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). Comparative Biochemistry and Physiology, 80, 411–414Google Scholar
Matsuda, T., Nakano, Y., Kanda, T., & Iwata, H. (1991). Gonadal hormones affect the hypothermia induced by serotonin1A (5HT1A) receptor activation. Life Sciences, 48, 1627–1632CrossRefGoogle Scholar
Mayberg, H., Brannan, S., Mahurin, R. K., Jerebak, P. A., Brickman, J. S., Tekell, J. L.. (1997). Cingulate function in depression: A potential predictor of treatment response. NeuroReport, 8, 1057–1061CrossRefGoogle Scholar
Mayberg, H. S. (1994). Frontal lobe dysfunction in secondary depression. Journal of Neuropsychiatry and Clinical Neurosciences, 6, 428–442Google ScholarPubMed
Mayberg, H. S., Brannan, S. K., Tekell, J. L., Silva, J. A., Mahurin, R. K., McGinnis, S.. (2000). Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biological Psychiatry, 48, 830–843CrossRefGoogle ScholarPubMed
Mayberg, H. S., Lewis, P. J., Regenold, W., & Wagner, H. N. Jr. (1994). Paralimbic Hypoperfusion in Unipolar Depression. Journal of Nuclear Medicine, 35, 929–934Google ScholarPubMed
Mayberg, H. S., Silva, J. A., Brannan, S. K., Tekell, J. L., Mahurin, R. K., McGinnis, S.. (2002). The functional neuroanatomy of the placebo effect. American Journal of Psychiatry, 159, 728–737CrossRefGoogle ScholarPubMed
McEwen, B. S. (1995). Adrenal steroid action on brain: Dissecting the fine line between protection and damage. In Friedman, M. J., Charney, D. S., & Deutch, A. Y. (Eds.), Neurobiological and clinical consequences of stress: From normal adaptation to PTSD. Philadelphia: Lippincott-RavenGoogle Scholar
McGuffin, P., Katz, R., Watkins, S., & Rutherford, J. (1996). A hospital-based twin register of the heritability of DSM-IV unipolar depression. Archives General Psychiatry, 53, 129–136CrossRefGoogle ScholarPubMed
McQueen, J. K., Wilson, H., & Fink, G. (1997). Estradiol-17 beta increases serotonin transporter (SERT) mRNA levels and the density of SERT-binding sites in female rat brain. Brain Research. Molecular Brain Research, 45, 13–23CrossRefGoogle ScholarPubMed
Meijer, O. C., & Kloet, R. (1998). Corticosterone and serotonergic neurotransmission in the hippocampus: Functional implications of central corticosteroid receptor diversity. Critical Reviews in Neurobiology, 12, 1–20CrossRefGoogle ScholarPubMed
Mendelson, S. D., & McEwen, B. A. (1990). Testosterone increases the concentration of (3H)8-hydroxy-2-(di-n-propylamino)tetralin binding at 5-HT1A receptors in the medial preoptic nucleus of the castrated male rat. European Journal of Pharmacology, 181, 329–331CrossRefGoogle ScholarPubMed
Mendelson, S. D., & McEwen, B. S. (1991). Autoradiographic analyses of the effects of restraint-induced stress on 5-HT1A, 5-HT1C and 5-HT2 receptors in the dorsal hippocampus of male and female rats. Neuroendocrinology, 54, 454–461CrossRefGoogle ScholarPubMed
Monteleone, P., Catapano, F., Tortorella, A., & Maj, M. (1997). Cortisol response to d-fenfluramine in patients with obsessive-compulsive disorder and in healthy subjects: evidence for a gender-related effect. Neuropsychobiology, 36, 8–12CrossRefGoogle ScholarPubMed
Murua, V. S., & Molina, V. A. (1992). Effects of chronic variable stress and antidepressant drugs on behavioral inactivity during an uncontrollable stress: interaction between both treatments. Behavioral Neural Biology, 57, 87–89CrossRefGoogle ScholarPubMed
Pecins-Thompson, M., Brown, N. A., Kohama, S. G., & Bethea, C. L.. (1996). Ovarian steroid regulation of tryptophan hydroxylase mRNA expression in rhesus macaques. Journal of Neuroscience, 16, 7021–7029CrossRefGoogle ScholarPubMed
Peroutka, S. J., & Snyder, S, H. (1980). Regulation of serotonin2 (5-HT2) receptors labeled with [3H]spiroperidol by chronic treatment with the antidepressant amitriptyline. Journal of Pharmacology and Experimental Therapeutics, 215, 582–587Google Scholar
Pfohl, B., Sherman, B., Schlecte, J., & Stone, R. (1985). Pituitary/adrenal axis rhythm disturbances in psychiatric patients. Archives General Psychiatry, 42, 897–903CrossRefGoogle Scholar
Raadsheer, F. C., Hoogendijk, W. J., Stam, F. C., Tilders, F. J., & Swaab, D. F. (1994). Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology, 60, 436–444CrossRefGoogle ScholarPubMed
Reul, J. M., Stec, I., Soder, M., & Holsboer, F. (1993). Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary adrenocortical system. Endocrinology, 133, 312–320CrossRefGoogle ScholarPubMed
Roca, C. A., Altemus, M., Galliven, E., Schmidt, P. J., Deuster, P., Gold, P.. (1998a). Effect of reproductive hormones on the hypothalamic-pituitary-adrenal axis response to stress. Biological Psychiatry, 43, 46SGoogle Scholar
Roca, C. A., Schmidt, P. J., Altemus, M., Dananceau, M., & Rubinow, D. (1998b, June 21–23). Effects of reproductive steroids on the Hypothalamic-pituitary-adrenal axis response to low dose dexamethasone. Abstract at Neuroendocrine Workshop on Stress, New Orleans
Roca, C. A., Schmidt, P. J., Altemus, M., Deuster, P., Danaceau, M. A., Putnam, K.. (2003). Differential menstrual cycle regulation of hypothalamic-pituitary-adrenal axis in women with premenstrual syndrome and controls. Journal Clinical Endocrinology and Metabolism, 88, 3057–3063CrossRefGoogle ScholarPubMed
Rousseau, G. G., Baxter, J. D., & Tomkins, G. M. (1972). Glucocorticoid receptors: relations between steroid binding and biological effects. Molecular Biology, 67, 99–115CrossRefGoogle ScholarPubMed
Rubin, R. T., Poland, R. E., Lesser, I. M., Winston, R. A., & Blodgett, N. (1987). Neuroendocrine aspects of primary endogenous depression I. Cortisol secretory dynamics in patients and matched controls. Archives General Psychiatry, 44, 328–336CrossRefGoogle ScholarPubMed
Rubinow, D. R., & Roy-Byrne, P. P. (1984). Premenstrual syndromes: overviews from a methodologic perspective. American Journal of Psychiatry, 141, 163–172Google Scholar
Rutter, M. (2002). The interplay of nature, nurture, and developmental influences. Archives General Psychiatry, 59, 996–1000CrossRefGoogle ScholarPubMed
Ryan, N., Birmaher, B., Perel, J. M., Dahl, R. E., Meyer, V., Al-Shabbout, M.. (1992). Neuroencocrine response to L-5-hydroxytryptophan challenge in prepubertal major depression. Archives of General Psychiatry, 49, 843–851CrossRefGoogle ScholarPubMed
Sachar, E. J., Hellman, L., Roffwarg, H. P., Halpern, F. S., Fukush, D. K., & Gallagher, T. F. (1973). Disrupted 24 hour patterns of cortisol secretion in psychotic depressives. Archives General Psychiatry, 28, 19–24CrossRefGoogle Scholar
Schreiber, R., & Vry, J. (1993). Neuronal circuits involved in the anxiolytic effects of the 5-HT1A receptor agonists 8-OH-DPAT ipsapirone and buspirone in the rat. European Journal of Pharmacology, 249, 341–351CrossRefGoogle ScholarPubMed
Seckl, J. R., & Fink, G. (1992). Use of in situ hybridization to investigate the regulation of hippocampal corticosteroid receptors by monoamines. Journal of Steroid Biochemistry and Molecular Biology, 40, 685–688CrossRefGoogle Scholar
Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160, 1516–1518CrossRefGoogle ScholarPubMed
Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., & Vannier, M. W. (1996). Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences, USA, 93, 3908–3913CrossRefGoogle ScholarPubMed
Southwick, S., Krystal, J., & Morgan, C. (1993). Abnormal noradrenergic function in posttraumatic stress disorder. Archives General Psychiatry, 50, 266–274CrossRefGoogle ScholarPubMed
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: review and meta-analysis. American Journal of Psychiatry, 157, 1552–1562CrossRefGoogle ScholarPubMed
Svec, F. (1988). Differences in the interaction of RU 486 and ketoconazole with the second binding site of the glucocorticoid receptor. Endocrinology, 123, 1902–1906CrossRefGoogle ScholarPubMed
Turner, B. B., & Weaver, D. A. (1985). Sexual dimorphism of glucocorticoid binding in rat brain. Brain Research, 343, 16–23CrossRefGoogle ScholarPubMed
Viau, V., & Meaney, M. J. (1991). Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology, 129, 2503–2511CrossRefGoogle ScholarPubMed
Bardeleben, U., Stalla, G. K., Mueller, O. A., & Holsboer, F. (1988). Blunting of ACTH response to CRH in depressed patients is avoided by metyrapone pretreatment. Biological Psychiatry, 24, 782–786CrossRefGoogle Scholar
Weissman, M. M., & Olfson, M. (1995). Depression in women: implications for health care research. Science, 269, 799–801CrossRefGoogle ScholarPubMed
Welner, S. A., Montigny, C., Desroches, J., Desjardins, P., & Suranyi-Cadotte, B. E. (1989). Autoradiographic quantification of serotonin1A receptors in rat brain following antidepressant drug treatment. Synapse, 4, 347–352CrossRefGoogle ScholarPubMed
Yates, M., Leake, A., Candy, J. M., Fairbairn, A. F., McKeith, I. G., & Ferrier, I. N. (1990). 5HT2 receptor changes in major depression. Biological Psychiatry, 27, 489–496CrossRefGoogle ScholarPubMed
Yoshino, K. (1982). Concentrations of monoamines and monoamine metabolites in cerebrospinal fluid determined by high-performance liquid chromatography with electrochemical detection. Brain & Nerve, 34, 1099–1106Google ScholarPubMed
Young, E. A. (1996). Sex differences in response to exogenous corticosterone. Molecular Psychiatry, 1, 313–319Google ScholarPubMed
Young, E. A., Abelson, J. L., & Cameron, O. G. (2004). Effect of comorbid anxiety disorders on the HPA axis response to a social stressor in major depression. 56:113–120. Biological Psychiatry, in pressCrossRefGoogle ScholarPubMed
Young, E. A., Aggen, S. H., Prescott, C. A., & Kendler, K. S. (2000). Similarity in saliva cortisol measures in monozygotic twins and the influence of past major depression. Biological Psychiatry, 48, 70–74CrossRefGoogle ScholarPubMed
Young, E. A., Akil, H., Haskett, R. F., & Watson, S. J.. (1985). Evidence Against Changes In Corticotroph CRF Receptors In Depressed Patients. Biological Psychiatry, 37, 355–363CrossRefGoogle Scholar
Young, E. A., Altemus, M., Parkison, V, & Shastry, S. (2001). Effects of estrogen antagonists and agonists on the ACTH response to restraint stress. Neuropsychopharmacology, 25, 881–891CrossRefGoogle ScholarPubMed
Young, E. A., & Breslau, N. (2004). Cortisol and catecholamines in posttraumatic stress disorder: A community study. Archives General Psychiatry, 61, 394–401CrossRefGoogle ScholarPubMed
Young, E. A., Carlson, N. E., & Brown, M. B. (2001). 24 Hour ACTH and Cortisol Pulsatility in Depressed Women, Neuropsychpoharmacology, 25, 267–276CrossRefGoogle ScholarPubMed
Young, E. A., Haskett, R. F., Grunhaus, L., Pande, A., Weinberg, V. M., Watson, S. J.. (1994). Increased circadian activation of the hypothalamic pituitary adrenal axis in depressed patients in the evening. Archives General Psychiatry, 51, 701–707CrossRefGoogle ScholarPubMed
Young, E. A., Haskett, R. F., Watson, S. J. & Akil, H. (1991). Loss of glucocorticoid fast feedback in depression. Archives of General Psychiatry, 48, 693–699CrossRefGoogle ScholarPubMed
Young, E. A., Kotun, J., Haskett, R. F., Grunhaus, L., Greden, J. F., Watson, S. J.. (1993). Dissociation between pituitary and adrenal suppression to dexamethasone in depression. Archives General Psychiatry, 50, 395–403CrossRefGoogle ScholarPubMed
Young, E. A., Lopez, J. F., Murphy-Weinberg, V., Watson, S. J., & Akil, H. (1997). Normal pituitary response to metyrapone in the morning in depressed patients: Implications for circadian regulation of CRH secretion, Biological Psychiatry, 41, 1149–1155CrossRefGoogle Scholar
Young, E. A., & Vazquez, D. (1996). Hypercortisolemia, hippocampal glucocorticoid receptors and fast feedback. Molecular Psychiatry, 1, 149–159Google ScholarPubMed
Young, E. A., Watson, S. J., Kotun, J., Haskett, R. F., Grunhaus, L., Murphy-Weinberg, V.. (1990). Response to low dose oCRH in endogenous depression: role of cortisol feedback. Archives General Psychiatry, 47, 449–457CrossRefGoogle Scholar
Zweifel, J. E., & O'Brien, W. H. (1997). A meta-analysis of the effect of hormone replacement therapy upon depressed mood. Psychoneuroendocrinology, 22, 189–212CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×