We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
I introduce quaternions by recounting the story of how Hamilton discovered them, but in far more detail than other authors give. This detail is necessary for the reader to understand why Hamilton wrote his quaternion equations in the way that he did. I describe the role of quaternions in rotation, show how to convert between them and matrices, and discuss their role in modern computer graphics. I describe a modern problem in detail whereby Hamilton’s original definition has been ‘hijacked’ in a way that has now produced much confusion. I end by describing how quaternions play a role in topology and quantum mechanics.
This book applies rotation theory to problems involving vectors and coordinates, with an approach that combines easily visualised procedures with smart mathematics. It constructs rotation theory from the ground up, building from basic geometry through to the motion and attitude equations of rockets, and the tensor analysis of relativity. The author replaces complicated pictures of superimposed axes with a simple and intuitive procedure of rotating a model aircraft, to create rotation sequences that are easily turned into mathematics. He combines the best of the 'active' and 'passive' approaches to rotation into a single coherent theory, and discusses many potential traps for newcomers. This volume will be useful to astronomers and engineers sighting planets and satellites, computer scientists creating graphics for movies, and aerospace engineers designing aircraft; also to physicists and mathematicians who study its abstract aspects.
This innovative introduction to the foundations of signals, systems, and transforms emphasises discrete-time concepts, smoothing the transition towards more advanced study in Digital Signal Processing (DSP). A digital-first approach, introducing discrete-time concepts from the beginning, equips students with a firm theoretical foundation in signals and systems, while emphasising topics fundamental to understanding DSP. Continuous-time approaches are introduced in later chapters, providing students with a well-rounded understanding that maintains a strong digital emphasis. Real-world applications, including music signals, signal denoising systems, and digital communication systems, are introduced to encourage student motivation. Early introduction of core concepts in digital filtering, DFT and FFT provide a frictionless transition through to more advanced study. Over 325 end-of-chapter problems, and over 50 computational problems using Matlab. Accompanied online by solutions and code for instructors, this rigorous textbook is ideal for undergraduate students in electrical engineering studying an introductory course in signals, systems, and signal processing.
• The role of nonverbal communication in interactions between people—how communication is enhanced by facial expressions, hand gestures, body posture, and sounds;
• The importance of interpreting, using, and responding to nonverbal cues in the appropriate way, both to successful human– robot interactions and to generate a positive perception of robots;
• Nonverbal communication channels that are unique to robots, as well as channels that replicate those commonly used by humans;
• How robotic sounds, lights, and colors or physical gestures with arms, legs, tails, ears, and other body parts can be effective for communicating with people.
• The importance of the spatial placement of agents in social interaction;
• Basic human proxemics: how people manage space in relation to others;
• How a robot manages the space around it, including interactions such as approaching, initiating interaction, maintaining distance, and navigating around people;
• How the properties of spatial interaction can be used as cues for robots.